control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
      SUBROUTINE MB04QF( DIRECT, STOREV, STOREW, N, K, V, LDV, W, LDW,
     $                   CS, TAU, RS, LDRS, T, LDT, DWORK )
C
C     PURPOSE
C
C     To form the triangular block factors R, S and T of a symplectic
C     block reflector SH, which is defined as a product of 2k
C     concatenated Householder reflectors and k Givens rotations,
C
C         SH = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
C              diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
C                                ....
C              diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
C
C     The upper triangular blocks of the matrices
C
C                                 [ S1 ]       [ T11 T12 T13 ]
C         R  = [ R1 R2 R3 ],  S = [ S2 ],  T = [ T21 T22 T23 ],
C                                 [ S3 ]       [ T31 T32 T33 ]
C
C     with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular,
C     are stored rowwise in the arrays RS and T, respectively.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DIRECT  CHARACTER*1
C             This is a dummy argument, which is reserved for future
C             extensions of this subroutine. Not referenced.
C
C     STOREV  CHARACTER*1
C             Specifies how the vectors which define the concatenated
C             Householder F(i) reflectors are stored:
C             = 'C':  columnwise;
C             = 'R':  rowwise.
C
C     STOREW  CHARACTER*1
C             Specifies how the vectors which define the concatenated
C             Householder H(i) reflectors are stored:
C             = 'C':  columnwise;
C             = 'R':  rowwise.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the Householder reflectors F(i) and H(i).
C             N >= 0.
C
C     K       (input) INTEGER
C             The number of Givens rotations.  K >= 1.
C
C     V       (input) DOUBLE PRECISION array, dimension
C                     (LDV,K) if STOREV = 'C',
C                     (LDV,N) if STOREV = 'R'
C             On entry with STOREV = 'C', the leading N-by-K part of
C             this array must contain in its i-th column the vector
C             which defines the elementary reflector F(i).
C             On entry with STOREV = 'R', the leading K-by-N part of
C             this array must contain in its i-th row the vector
C             which defines the elementary reflector F(i).
C
C     LDV     INTEGER
C             The leading dimension of the array V.
C             LDV >= MAX(1,N),  if STOREV = 'C';
C             LDV >= K,         if STOREV = 'R'.
C
C     W       (input) DOUBLE PRECISION array, dimension
C                     (LDW,K) if STOREW = 'C',
C                     (LDW,N) if STOREW = 'R'
C             On entry with STOREW = 'C', the leading N-by-K part of
C             this array must contain in its i-th column the vector
C             which defines the elementary reflector H(i).
C             On entry with STOREV = 'R', the leading K-by-N part of
C             this array must contain in its i-th row the vector
C             which defines the elementary reflector H(i).
C
C     LDW     INTEGER
C             The leading dimension of the array W.
C             LDW >= MAX(1,N),  if STOREW = 'C';
C             LDW >= K,         if STOREW = 'R'.
C
C     CS      (input) DOUBLE PRECISION array, dimension (2*K)
C             On entry, the first 2*K elements of this array must
C             contain the cosines and sines of the symplectic Givens
C             rotations G(i).
C
C     TAU     (input) DOUBLE PRECISION array, dimension (K)
C             On entry, the first K elements of this array must
C             contain the scalar factors of the elementary reflectors
C             F(i).
C
C     RS      (output) DOUBLE PRECISION array, dimension (K,6*K)
C             On exit, the leading K-by-6*K part of this array contains
C             the upper triangular matrices defining the factors R and
C             S of the symplectic block reflector SH. The (strictly)
C             lower portions of this array are not used.
C
C     LDRS    INTEGER
C             The leading dimension of the array RS.  LDRS >= K.
C
C     T       (output) DOUBLE PRECISION array, dimension (K,9*K)
C             On exit, the leading K-by-9*K part of this array contains
C             the upper triangular matrices defining the factor T of the
C             symplectic block reflector SH. The (strictly) lower
C             portions of this array are not used.
C
C     LDT     INTEGER
C             The leading dimension of the array T.  LDT >= K.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (3*K)
C
C     REFERENCES
C
C     [1] Kressner, D.
C         Block algorithms for orthogonal symplectic factorizations.
C         BIT, 43 (4), pp. 775-790, 2003.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires ( 4*K - 2 )*K*N + 19/3*K*K*K + 1/2*K*K
C     + 43/6*K - 4 floating point operations.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DLAEST).
C
C     KEYWORDS
C
C     Elementary matrix operations, orthogonal symplectic matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DIRECT, STOREV, STOREW
      INTEGER           K, LDRS, LDT, LDV, LDW, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), RS(LDRS,*), T(LDT,*),
     $                  TAU(*), V(LDV,*), W(LDW,*)
C     .. Local Scalars ..
      LOGICAL           LCOLV, LCOLW
      INTEGER           I, J, K2, PR1, PR2, PR3, PS1, PS2, PS3, PT11,
     $                  PT12, PT13, PT21, PT22, PT23, PT31, PT32, PT33
      DOUBLE PRECISION  CM1, TAUI, VII, WII
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DSCAL, DTRMV
C
C     .. Executable Statements ..
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
      LCOLV = LSAME( STOREV, 'C' )
      LCOLW = LSAME( STOREW, 'C' )
C
      K2  = K + K
      PR1 = 0
      PR2 = PR1 + K
      PR3 = PR2 + K
      PS1 = PR3 + K
      PS2 = PS1 + K
      PS3 = PS2 + K
C
      PT11 = 0
      PT12 = PT11 + K
      PT13 = PT12 + K
      PT21 = PT13 + K
      PT22 = PT21 + K
      PT23 = PT22 + K
      PT31 = PT23 + K
      PT32 = PT31 + K
      PT33 = PT32 + K
C
      DO 90  I = 1, K
         TAUI = TAU(I)
         VII = V(I,I)
         V(I,I) = ONE
         WII = W(I,I)
         W(I,I) = ONE
         IF ( WII.EQ.ZERO ) THEN
            DO 10  J = 1, I
               T(J,PT11+I) = ZERO
   10       CONTINUE
            DO 20  J = 1, I-1
               T(J,PT21+I) = ZERO
   20       CONTINUE
            DO 30  J = 1, I-1
               T(J,PT31+I) = ZERO
   30       CONTINUE
            DO 40  J = 1, I-1
               RS(J,PS1+I) = ZERO
   40       CONTINUE
         ELSE
C
C           Treat first Householder reflection.
C
            IF ( LCOLV.AND.LCOLW ) THEN
C
C              Compute t1 = -wii * W(i:n,1:i-1)' * W(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -WII, W(I,1), LDW,
     $                     W(I,I), 1, ZERO, DWORK, 1 )
C
C              Compute t2 = -wii * V(i:n,1:i-1)' * W(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -WII, V(I,1), LDV,
     $                     W(I,I), 1, ZERO, DWORK(K+1), 1 )
            ELSE IF ( LCOLV ) THEN
C
C              Compute t1 = -wii * W(1:i-1,i:n) * W(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -WII, W(1,I),
     $                     LDW, W(I,I), LDW, ZERO, DWORK, 1 )
C
C              Compute t2 = -wii * V(i:n,1:i-1)' * W(i,i:n)'.
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -WII, V(I,1), LDV,
     $                     W(I,I), LDW, ZERO, DWORK(K+1), 1 )
            ELSE IF ( LCOLW ) THEN
C
C              Compute t1 = -wii * W(i:n,1:i-1)' * W(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -WII, W(I,1), LDW,
     $                     W(I,I), 1, ZERO, DWORK, 1 )
C
C              Compute t2 = -wii * V(1:i-1,i:n) * W(i:n,i).
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -WII, V(1,I),
     $                     LDV, W(I,I), 1, ZERO, DWORK(K+1), 1 )
            ELSE
C
C              Compute t1 = -wii * W(1:i-1,i:n) * W(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -WII, W(1,I),
     $                     LDW, W(I,I), LDW, ZERO, DWORK, 1 )
C
C              Compute t2 = -wii * V(1:i-1,i:n) * W(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -WII, V(1,I),
     $                     LDV, W(I,I), LDW, ZERO, DWORK(K+1), 1 )
            END IF
C
C           T11(1:i-1,i) := T11(1:i-1,1:i-1)*t1 + T13(1:i-1,1:i-1)*t2
C
            CALL DCOPY( I-1, DWORK, 1, T(1,PT11+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT11+1), LDT, T(1,PT11+I), 1 )
            CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT13+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT13+1), LDT, T(1,PT13+I), 1 )
            CALL DAXPY( I-1, ONE, T(1,PT13+I), 1, T(1,PT11+I), 1 )
            T(I,PT11+I) = -WII
C
            IF ( I.GT.1 ) THEN
C
C              T21(1:i-1,i) := T21(1:i-1,1:i-1)*t1 + T23(1:i-1,1:i-1)*t2
C
               CALL DCOPY( I-2, DWORK(2), 1, T(1,PT21+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-2,
     $                     T(1,PT21+2), LDT, T(1,PT21+I), 1 )
               T(I-1, PT21+I) = ZERO
               CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT23+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                     T(1,PT23+1), LDT, T(1,PT23+I), 1 )
               CALL DAXPY( I-1, ONE, T(1,PT23+I), 1, T(1,PT21+I), 1 )
C
C              T31(1:i-1,i) := T31(1:i-1,1:i-1)*t1 + T33(1:i-1,1:i-1)*t2
C
               CALL DCOPY( I-2, DWORK(2), 1, T(1,PT31+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-2,
     $                     T(1,PT31+2), LDT, T(1,PT31+I), 1 )
               T(I-1, PT31+I) = ZERO
               CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT33+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                     T(1,PT33+1), LDT, T(1,PT33+I), 1 )
               CALL DAXPY( I-1, ONE, T(1,PT33+I), 1, T(1,PT31+I), 1 )
C
C              S1(1:i-1,i) := S1(1:i-1,1:i-1)*t1 + S3(1:i-1,1:i-1)*t2
C
               CALL DCOPY( I-2, DWORK(2), 1, RS(1,PS1+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-2,
     $                     RS(1,PS1+2), LDRS, RS(1,PS1+I), 1 )
               RS(I-1, PS1+I) = ZERO
               CALL DCOPY( I-1, DWORK(K+1), 1, RS(1,PS3+I), 1 )
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                     RS(1,PS3+1), LDRS, RS(1,PS3+I), 1 )
               CALL DAXPY( I-1, ONE, RS(1,PS3+I), 1, RS(1,PS1+I), 1 )
            END IF
         END IF
C
C        Treat Givens rotation.
C
         CM1 = CS(2*I-1) - ONE
         IF ( LCOLW ) THEN
            CALL DCOPY( I, W(I,1), LDW, DWORK, 1 )
         ELSE
            CALL DCOPY( I, W(1,I), 1, DWORK, 1 )
         END IF
         IF ( LCOLV ) THEN
            CALL DCOPY( I-1, V(I,1), LDV, DWORK(K+1), 1 )
         ELSE
            CALL DCOPY( I-1, V(1,I), 1, DWORK(K+1), 1 )
         END IF
C
C        R1(1:i,i) = T11(1:i,1:i) * dwork(1:i)
C                    + [ T13(1:i-1,1:i-1) * dwork(k+1:k+i-1); 0 ]
C
         CALL DCOPY( I, DWORK, 1, RS(1,PR1+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I,
     $               T(1,PT11+1), LDT, RS(1,PR1+I), 1 )
         CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT13+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               T(1,PT13+1), LDT, T(1,PT13+I), 1 )
         CALL DAXPY( I-1, ONE, T(1,PT13+I), 1, RS(1,PR1+I), 1 )
C
C        R2(1:i-1,i) = T21(1:i-1,2:i) * W(i,2:i)
C                      + T23(1:i-1,1:i-1) * V(i,1:i-1)
C
         CALL DCOPY( I-1, DWORK(2), 1, RS(1,PR2+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               T(1,PT21+2), LDT, RS(1,PR2+I), 1 )
         CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT23+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               T(1,PT23+1), LDT, T(1,PT23+I), 1 )
         CALL DAXPY( I-1, ONE, T(1,PT23+I), 1, RS(1,PR2+I), 1 )
C
C        R3(1:i-1,i) = T31(1:i-1,2:i) * dwork(2:i)
C                      + T33(1:i-1,1:i-1) * dwork(k+1:k+i-1)
C
         CALL DCOPY( I-1, DWORK(2), 1, RS(1,PR3+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               T(1,PT31+2), LDT, RS(1,PR3+I), 1 )
         CALL DCOPY( I-1, DWORK(K+1), 1, T(1,PT33+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               T(1,PT33+1), LDT, T(1,PT33+I), 1 )
         CALL DAXPY( I-1, ONE, T(1,PT33+I), 1, RS(1,PR3+I), 1 )
C
C        S2(1:i-1,i) = S1(1:i-1,2:i) * dwork(2:i)
C                      + S3(1:i-1,1:i-1) * dwork(k+1:k+i-1)
C
         CALL DCOPY( I-1, DWORK(2), 1, RS(1,PS2+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               RS(1,PS1+2), LDRS, RS(1,PS2+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               RS(1,PS3+1), LDRS, DWORK(K+1), 1 )
         CALL DAXPY( I-1, ONE, DWORK(K+1), 1, RS(1,PS2+I), 1 )
         RS(I,PS2+I) = -CS(2*I)
C
C        T12(1:i,i) = [ R1(1:i-1,1:i-1)*S2(1:i-1,i); 0 ]
C                     + (c-1) * R1(1:i,i)
C
         CALL DCOPY( I-1, RS(1,PS2+I), 1, T(1,PT12+I), 1 )
         CALL DSCAL( I-1, CM1, RS(1,PS2+I), 1)
         CALL DSCAL( I-1, CS(2*I), T(1,PT12+I), 1 )
         CALL DCOPY( I-1, T(1,PT12+I), 1, T(1,PT22+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $               RS(1,PR1+1), LDRS, T(1,PT12+I), 1 )
         T(I,PT12+I) = ZERO
         CALL DAXPY( I, CM1, RS(1,PR1+I), 1, T(1,PT12+I), 1 )
C
C        T22(1:i-1,i) = R2(1:i-1,1:i-1)*S2(1:i-1,i) + (c-1)*R2(1:i-1,i)
C
         IF (I.GT.1)
     $      CALL DCOPY( I-2, T(2,PT22+I), 1, T(1,PT32+I), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Unit diagonal', I-1,
     $               RS(1,PR2+1), LDRS, T(1,PT22+I), 1 )
         CALL DAXPY( I-1, CM1, RS(1,PR2+I), 1, T(1,PT22+I), 1 )
         T(I,PT22+I) = CM1
C
C        T32(1:i-1,i) = R3(1:i-1,1:i-1)*S2(1:i-1,i) + (c-1)*R3(1:i-1,i)
C
         IF ( I.GT.1 ) THEN
            CALL DTRMV( 'Upper', 'No transpose', 'Non-Unit', I-2,
     $                  RS(1,PR3+2), LDRS, T(1,PT32+I), 1 )
            T(I-1,PT32+I) = ZERO
            CALL DAXPY( I-1, CM1, RS(1,PR3+I), 1, T(1,PT32+I), 1 )
         END IF
C
         IF ( TAUI.EQ.ZERO ) THEN
            DO 50  J = 1, I
               T(J,PT13+I) = ZERO
   50       CONTINUE
            DO 60  J = 1, I
               T(J,PT23+I) = ZERO
   60       CONTINUE
            DO 70  J = 1, I
               T(J,PT33+I) = ZERO
   70       CONTINUE
            DO 80  J = 1, I
               RS(J,PS3+I) = ZERO
   80       CONTINUE
         ELSE
C
C           Treat second Householder reflection.
C
            IF ( LCOLV.AND.LCOLW ) THEN
C
C              Compute t1 = -tau(i) * W(i:n,1:i)' * V(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I, -TAUI, W(I,1),
     $                     LDW, V(I,I), 1, ZERO, DWORK, 1 )
C
C              Compute t2 = -tau(i) * V(i:n,1:i-1)' * V(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -TAUI, V(I,1),
     $                     LDV, V(I,I), 1, ZERO, DWORK(K2+1), 1 )
            ELSE IF ( LCOLV ) THEN
C
C              Compute t1 = -tau(i) * W(1:i,i:n) * V(i:n,i).
C
               CALL DGEMV( 'No Transpose', I, N-I+1, -TAUI, W(1,I),
     $                     LDW, V(I,I), 1, ZERO, DWORK, 1 )
C
C              Compute t2 = -tau(i) * V(i:n,1:i-1)' * V(i:n,i).
C
               CALL DGEMV( 'Transpose', N-I+1, I-1, -TAUI, V(I,1),
     $                     LDV, V(I,I), 1, ZERO, DWORK(K2+1), 1 )
            ELSE IF ( LCOLW ) THEN
C
C              Compute t1 = -tau(i) * W(i:n,1:i)' * V(i,i:n)'.
C
               CALL DGEMV( 'Transpose', N-I+1, I, -TAUI, W(I,1),
     $                     LDW, V(I,I), LDV, ZERO, DWORK, 1 )
C
C              Compute t2 = -tau(i) * V(1:i-1,i:n) * V(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -TAUI, V(1,I),
     $                     LDV, V(I,I), LDV, ZERO, DWORK(K2+1), 1 )
            ELSE
C
C              Compute t1 = -tau(i) * W(1:i,i:n) * V(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I, N-I+1, -TAUI, W(1,I),
     $                     LDW, V(I,I), LDV, ZERO, DWORK, 1 )
C
C              Compute t2 = -tau(i) * V(1:i-1,i:n) * V(i,i:n)'.
C
               CALL DGEMV( 'No Transpose', I-1, N-I+1, -TAUI, V(1,I),
     $                     LDV, V(I,I), LDV, ZERO, DWORK(K2+1), 1 )
            END IF
C
C           T13(1:i,i) := T11(1:i,1:i)*t1 - tau(i)*T12(1:i,i)
C                                         + [T13(1:i-1,1:i-1)*t2;0]
C
            CALL DCOPY( I-1, DWORK(K2+1), 1, T(1,PT13+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT13+1), LDT, T(1,PT13+I), 1 )
            T(I,PT13+I) = ZERO
            CALL DCOPY( I, DWORK, 1, DWORK(K+1), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I,
     $                  T(1,PT11+1), LDT, DWORK(K+1), 1 )
            CALL DAXPY( I, ONE, DWORK(K+1), 1, T(1,PT13+I), 1 )
            CALL DAXPY( I, -TAUI, T(1,PT12+I), 1, T(1,PT13+I), 1 )
C
C           T23(1:i,i) := T21(1:i,1:i)*t1 - tau(i)*T22(1:i,i)
C                                         + [T23(1:i-1,1:i-1)*t2;0]
C
            CALL DCOPY( I-1, DWORK(K2+1), 1, T(1,PT23+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT23+1), LDT, T(1,PT23+I), 1 )
            T(I,PT23+I) = ZERO
            CALL DCOPY( I-1, DWORK(2), 1, DWORK(K+1), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT21+2), LDT, DWORK(K+1), 1 )
            CALL DAXPY( I-1, ONE, DWORK(K+1), 1, T(1,PT23+I), 1 )
            CALL DAXPY( I, -TAUI, T(1,PT22+I), 1, T(1,PT23+I), 1 )
C
C           T33(1:i,i) := T31(1:i,1:i)*t1 - tau(i)*T32(1:i,i)
C                                         + [T33(1:i-1,1:i-1)*t2;0]
C
            CALL DCOPY( I-1, DWORK(K2+1), 1, T(1,PT33+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT33+1), LDT, T(1,PT33+I), 1 )
            CALL DCOPY( I-1, DWORK(2), 1, DWORK(K+1), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  T(1,PT31+2), LDT, DWORK(K+1), 1 )
            CALL DAXPY( I-1, ONE, DWORK(K+1), 1, T(1,PT33+I), 1 )
            CALL DAXPY( I-1, -TAUI, T(1,PT32+I), 1, T(1,PT33+I), 1 )
            T(I,PT33+I) = -TAUI
C
C           S3(1:i,i) := S1(1:i,1:i)*t1 - tau(i)*S2(1:i,i)
C                                       + [S3(1:i-1,1:i-1)*t2;0]
C
            CALL DCOPY( I-1, DWORK(K2+1), 1, RS(1,PS3+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  RS(1,PS3+1), LDRS, RS(1,PS3+I), 1 )
            CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,
     $                  RS(1,PS1+2), LDRS, DWORK(2), 1 )
            CALL DAXPY( I-1, ONE, DWORK(2), 1, RS(1,PS3+I), 1 )
            RS(I,PS3+I) = ZERO
            CALL DAXPY( I, -TAUI, RS(1,PS2+I), 1, RS(1,PS3+I), 1 )
         END IF
         W(I,I) = WII
         V(I,I) = VII
   90 CONTINUE
C
      RETURN
C *** Last line of MB04QF ***
      END