SUBROUTINE TF01ND( UPLO, N, M, P, NY, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, U, LDU, X, Y, LDY, DWORK, INFO )
C
C     PURPOSE
C
C     To compute the output sequence of a linear time-invariant
C     open-loop system given by its discrete-time state-space model
C     (A,B,C,D), where A is an N-by-N upper or lower Hessenberg matrix.
C
C     The initial state vector x(1) must be supplied by the user.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Indicates whether the user wishes to use an upper or lower
C             Hessenberg matrix as follows:
C             = 'U':  Upper Hessenberg matrix;
C             = 'L':  Lower Hessenberg matrix.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NY      (input) INTEGER
C             The number of output vectors y(k) to be computed.
C             NY >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             If UPLO = 'U', the leading N-by-N upper Hessenberg part
C             of this array must contain the state matrix A of the
C             system.
C             If UPLO = 'L', the leading N-by-N lower Hessenberg part
C             of this array must contain the state matrix A of the
C             system.
C             The remainder of the leading N-by-N part is not
C             referenced.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             input matrix B of the system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array must contain the
C             output matrix C of the system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             direct link matrix D of the system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     U       (input) DOUBLE PRECISION array, dimension (LDU,NY)
C             The leading M-by-NY part of this array must contain the
C             input vector sequence u(k), for k = 1,2,...,NY.
C             Specifically, the k-th column of U must contain u(k).
C
C     LDU     INTEGER
C             The leading dimension of array U.  LDU >= MAX(1,M).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the initial state vector
C             x(1) which consists of the N initial states of the system.
C             On exit, this array contains the final state vector
C             x(NY+1) of the N states of the system at instant NY.
C
C     Y       (output) DOUBLE PRECISION array, dimension (LDY,NY)
C             The leading P-by-NY part of this array contains the output
C             vector sequence y(1),y(2),...,y(NY) such that the k-th
C             column of Y contains y(k) (the outputs at instant k),
C             for k = 1,2,...,NY.
C
C     LDY     INTEGER
C             The leading dimension of array Y.  LDY >= MAX(1,P).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given an initial state vector x(1), the output vector sequence
C     y(1), y(2),..., y(NY) is obtained via the formulae
C
C        x(k+1) = A x(k) + B u(k)
C        y(k)   = C x(k) + D u(k),
C
C     where each element y(k) is a vector of length P containing the
C     outputs at instant k and k = 1,2,...,NY.
C
C     REFERENCES
C
C     [1] Luenberger, D.G.
C         Introduction to Dynamic Systems: Theory, Models and
C         Applications.
C         John Wiley & Sons, New York, 1979.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately ((N+M)xP + (N/2+M)xN) x NY
C     multiplications and additions.
C
C     FURTHER COMMENTS
C
C     The processing time required by this routine will be approximately
C     half that required by the SLICOT Library routine TF01MD, which
C     treats A as a general matrix.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TF01BD by S. Van Huffel, Katholieke
C     Univ. Leuven, Belgium.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2003.
C
C     KEYWORDS
C
C     Discrete-time system, Hessenberg form, multivariable system,
C     state-space model, state-space representation, time response.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         UPLO
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDU, LDY, M, N, NY, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), U(LDU,*), X(*), Y(LDY,*)
C     .. Local Scalars ..
      LOGICAL           LUPLO
      INTEGER           I, IK
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DLASET, DTRMV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LUPLO = LSAME( UPLO, 'U' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( NY.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -11
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDU.LT.MAX( 1, M ) ) THEN
         INFO = -15
      ELSE IF( LDY.LT.MAX( 1, P ) ) THEN
         INFO = -18
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TF01ND', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( P, NY ).EQ.0 ) THEN
         RETURN
      ELSE IF ( N.EQ.0 ) THEN
C
C        Non-dynamic system: compute the output vectors.
C
         IF ( M.EQ.0 ) THEN
            CALL DLASET( 'Full', P, NY, ZERO, ZERO, Y, LDY )
         ELSE
            CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE,
     $                  D, LDD, U, LDU, ZERO, Y, LDY )
         END IF
         RETURN
      END IF
C
      CALL DCOPY( N, X, 1, DWORK, 1 )
C
      DO 30 IK = 1, NY
         CALL DGEMV( 'No transpose', P, N, ONE, C, LDC, DWORK, 1, ZERO,
     $               Y(1,IK), 1 )
C
         CALL DTRMV( UPLO, 'No transpose', 'Non-unit', N, A, LDA,
     $               DWORK, 1 )
C
         IF ( LUPLO ) THEN
C
            DO 10 I = 2, N
               DWORK(I) = DWORK(I) + A(I,I-1)*X(I-1)
   10       CONTINUE
C
         ELSE
C
            DO 20 I = 1, N - 1
               DWORK(I) = DWORK(I) + A(I,I+1)*X(I+1)
   20       CONTINUE
C
         END IF
C
         CALL DGEMV( 'No transpose', N, M, ONE, B, LDB, U(1,IK), 1, ONE,
     $               DWORK, 1 )
C
         CALL DCOPY( N, DWORK, 1, X, 1 )
   30 CONTINUE
C
      CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE, D, LDD,
     $            U, LDU, ONE, Y, LDY )
C
      RETURN
C *** Last line of TF01ND ***
      END