control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
      SUBROUTINE TG01HU( COMPQ, COMPZ, L, N, M1, M2, P, N1, LBE, A, LDA,
     $                   E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NR,
     $                   NRBLCK, RTAU, TOL, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     Given the descriptor system (A-lambda*E,B,C) with the system
C     matrices A, E and B of the form
C
C            ( A1 X1 )        ( E1 Y1 )        ( B1 B2 )
C        A = (       ) ,  E = (       ) ,  B = (       ) ,
C            ( 0  X2 )        ( 0  Y2 )        ( 0  0  )
C
C     where
C          - B is an L-by-(M1+M2) matrix,
C            with B1 an N1-by-M1 submatrix, B2 an N1-by-M2 submatrix,
C          - A is an L-by-N matrix, with A1 an N1-by-N1 submatrix,
C          - E is an L-by-N matrix, with E1 an N1-by-N1 submatrix
C              with LBE nonzero sub-diagonals,
C     this routine reduces the pair (A1-lambda*E1,[B1 B2]) to the form
C
C     Qc'*[B1 B2 A1-lambda*E1 ]*diag(I,Zc) =
C
C                              ( Bc1 Bc2 Ac-lambda*Ec      *         )
C                              (                                     ) ,
C                              (  0   0       0       Anc-lambda*Enc )
C
C     where:
C     1) the pencil ( Bc1 Bc2 Ac-lambda*Ec ) has full row rank NR for
C        all finite lambda and is in a staircase form with
C
C                [ A11 A12  . . .  A1,p-2 A1,p-1 A1p ]
C                [ A21 A22  . . .  A2,p-2 A2,p-1 A2p ]
C                [ A31 A32  . . .  A3,p-2 A3,p-1 A3p ]
C                [  0  A42  . . .  A4,p-2 A4,p-1 A4p ]
C           Ac = [  .   .   . . .    .      .     .  ],              (1)
C                [  .   .     . .    .      .     .  ]
C                [  .   .       .    .      .     .  ]
C                [  0   0   . . .  Ap,p-2 Ap,p-1 App ]
C
C
C                     [ A1,-1 A1,0 ]
C                     [  0    A2,0 ]
C                     [  0     0   ]             ( E11  E12 ...  E1p  )
C                     [  0     0   ]             (  0   E22 ...  E2p  )
C         [Bc1 Bc2] = [  .     .   ],       Ec = (   .   .   .    .   ),
C                     [  .     .   ]             (   .   .   .    .   )
C                     [  .     .   ]             (   0   0  ...  Epp  )
C                     [  0     0   ]
C
C         where the block  Ai,i-2 is an rtau(i)-by-rtau(i-2) full row
C         rank matrix (with rtau(-1) = M1, rtau(0) = M2) and Ei,i is an
C         rtau(i)-by-rtau(i) upper triangular matrix.
C
C      2) the pencil Anc-lambda*Enc is regular of order N1-NR with Enc
C         upper triangular; this pencil contains the uncontrollable
C         finite eigenvalues of the pencil (A1-lambda*E1).
C
C     The transformations are applied to the whole matrices A, E, B
C     and C. The left and/or right orthogonal transformations Qc and Zc,
C     performed to reduce the pencil, can be optionally accumulated in
C     the matrices Q and Z, respectively.
C
C     The reduced order descriptor system (Ac-lambda*Ec,Bc,Cc) has no
C     uncontrollable finite eigenvalues and has the same transfer-
C     function matrix as the original system (A-lambda*E,B,C).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             = 'N':  do not compute Q;
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'U':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C
C     COMPZ   CHARACTER*1
C             = 'N':  do not compute Z;
C             = 'I':  Z is initialized to the unit matrix, and the
C                     orthogonal matrix Z is returned;
C             = 'U':  Z must contain an orthogonal matrix Z1 on entry,
C                     and the product Z1*Z is returned.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The number of descriptor state equations; also the number
C             of rows of the matrices A, E and B.  L >= 0.
C
C     N       (input) INTEGER
C             The dimension of the descriptor state vector; also the
C             number of columns of the matrices A, E and C.  N >= 0.
C
C     M1      (input) INTEGER
C             The number of system inputs in U1, or of columns of B1.
C             M1 >= 0.
C
C     M2      (input) INTEGER
C             The number of system inputs in U2, or of columns of B2.
C             M2 >= 0.
C
C     P       (input) INTEGER
C             The dimension of descriptor system output; also the
C             number of rows of the matrix C.  P >= 0.
C
C     N1      (input) INTEGER
C             The order of the subsystem (A1-lambda*E1,B1,C1) to be
C             reduced.  MIN(L,N) >= N1 >= 0.
C
C     LBE     (input) INTEGER
C             The number of nonzero sub-diagonals of the submatrix E1.
C             MAX(0,N1-1) >= LBE >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading L-by-N part of this array must
C             contain the L-by-N state matrix A in the partitioned form
C
C                      ( A1 X1 )
C                  A = (       ) ,
C                      ( 0  X2 )
C
C             where A1 is N1-by-N1.
C             On exit, the leading L-by-N part of this array contains
C             the transformed state matrix,
C
C                                          ( Ac  *   * )
C                       Qc'*A*diag(Zc,I) = ( 0  Anc  * ) ,
C                                          ( 0   0   * )
C
C             where Ac is NR-by-NR and Anc is (N1-NR)-by-(N1-NR).
C             The matrix ( Bc Ac ) is in the controllability staircase
C             form (1).
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,L).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading L-by-N part of this array must
C             contain the L-by-N descriptor matrix E in the partitioned
C             form
C                      ( E1 Y1 )
C                  E = (       ) ,
C                      ( 0  Y2 )
C
C             where E1 is an N1-by-N1 matrix with LBE nonzero
C             sub-diagonals.
C             On exit, the leading L-by-N part of this array contains
C             the transformed descriptor matrix
C
C                                          ( Ec  *   * )
C                       Qc'*E*diag(Zc,I) = ( 0  Enc  * ) ,
C                                          ( 0   0   * )
C
C             where Ec is NR-by-NR and Enc is (N1-NR)-by-(N1-NR).
C             Both Ec and Enc are upper triangular and Enc is
C             nonsingular.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,L).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             with M = M1 + M2.
C             On entry, the leading L-by-M part of this array must
C             contain the L-by-M input matrix B in the partitioned form
C
C                      ( Bi )
C                  B = (    ) ,
C                      ( 0  )
C
C             where Bi is N1-by-M.
C             On exit, the leading L-by-M part of this array contains
C             the transformed input matrix
C
C                               ( Bc )
C                       Qc'*B = (    ) ,
C                               ( 0  )
C
C             where Bc is NR-by-M.
C             The matrix ( Bc Ac ) is in the controllability staircase
C             form (1).
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,L).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Zc.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
C             If COMPQ = 'N': Q is not referenced.
C             If COMPQ = 'I': on entry, Q need not be set;
C                             on exit, the leading L-by-L part of this
C                             array contains the orthogonal matrix Qc,
C                             where Qc' is the product of the
C                             transformations applied to A, E, and B on
C                             the left.
C             If COMPQ = 'U': on entry, the leading L-by-L part of this
C                             array must contain an orthogonal matrix Q;
C                             on exit, the leading L-by-L part of this
C                             array contains the orthogonal matrix
C                             Q*Qc.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.
C             LDQ >= 1,        if COMPQ = 'N';
C             LDQ >= MAX(1,L), if COMPQ = 'I' or 'U'.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = 'N': Z is not referenced.
C             If COMPZ = 'I': on entry, Z need not be set;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix Zc,
C                             i.e., the product of the transformations
C                             applied to A, E, and C on the right.
C             If COMPZ = 'U': on entry, the leading N-by-N part of this
C                             array must contain an orthogonal matrix Z;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix
C                             Z*Zc.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.
C             LDZ >= 1,        if COMPZ = 'N';
C             LDZ >= MAX(1,N), if COMPZ = 'I' or 'U'.
C
C     NR      (output) INTEGER
C             The order of the reduced matrices Ac and Ec, and the
C             number of rows of the reduced matrix Bc; also the order of
C             the controllable part of the pair (B, A-lambda*E).
C
C     NRBLCK  (output) INTEGER
C             The number p, of full row rank blocks Ai,i-2 in the
C             staircase form of the pencil (Bc1 Bc2 Ac-lambda*Ec).
C
C     RTAU    (output) INTEGER array, dimension (2*N1)
C             The leading NRBLCK elements of this array contain the
C             orders of the diagonal blocks of Ac. NRBLCK is always
C             an even number, and the NRBLCK/2 odd and even components
C             of RTAU have decreasing values, respectively.
C             Note that some elements of RTAU can be zero.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determinations when
C             transforming (A-lambda*E, B). If the user sets TOL > 0,
C             then the given value of TOL is used as a lower bound for
C             reciprocal condition numbers in rank determinations; a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = L*N*EPS,  is used instead, where
C             EPS is the machine precision (see LAPACK Library routine
C             DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1, if MIN(N1,M) = 0; otherwise,
C             LDWORK >= MAX(N1+MAX(L,N,M),2*M), if LBE > 0 and N1 > 2;
C             LDWORK >= MAX(1,L,N,2*M),         if LBE = 0 or N1 <= 2.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The implemented algorithm [1] represents a specialization of the
C     controllability staircase algorithm of [2] to the special structure
C     of the input matrix B = [B1,B2].
C
C     REFERENCES
C
C     [1] Varga, A.
C         Reliable algorithms for computing minimal dynamic covers for
C         descriptor systems.
C         Proc. of MTNS'04, Leuven, Belgium, 2004.
C
C     [2] Varga, A.
C         Computation of Irreducible Generalized State-Space
C         Realizations.
C         Kybernetika, vol. 26, pp. 89-106, 1990.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N*N1**2 )  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     April 2003. Based on the SLICOT routine TG01HX.
C
C     REVISIONS
C
C     A. Varga, Dec. 2006.
C     V. Sima, Dec. 2016, Mar. 2019.
C
C     KEYWORDS
C
C     Controllability, minimal realization, orthogonal canonical form,
C     orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER            IMAX, IMIN
      PARAMETER          ( IMAX = 1, IMIN = 2 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ
      INTEGER            INFO, L, LBE, LDA, LDB, LDC, LDE, LDQ, LDWORK,
     $                   LDZ, M1, M2, N, N1, NR, NRBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * ), RTAU( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK( * ),  E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
C     .. Local Scalars ..
      LOGICAL            B1RED, ILQ, ILZ, LQUERY, ONECOL, WITHC
      INTEGER            I, IC, ICOL, ICOMPQ, ICOMPZ, IROW, ISMAX,
     $                   ISMIN, J, JB2, K, M, MCRT, MCRT1, MCRT2,
     $                   MINWRK, MN, NB, NF, NR1, NX, RANK, WRKOPT
      DOUBLE PRECISION   C1, C2, CO, RCOND, S1, S2, SI, SMAX, SMAXPR,
     $                   SMIN, SMINPR, SVLMAX, SVMA, SVMR, T, TOLZ, TT
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLANGE, DLAPY2, DNRM2, IDAMAX, ILAENV,
     $                   LSAME
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEQRF, DLACPY, DLAIC1, DLARF, DLARFG,
     $                   DLARTG, DLASET, DORMQR, DROT, DSWAP, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
C
C     .. Executable Statements ..
C
C     Decode COMPQ.
C
      IF( LSAME( COMPQ, 'N' ) ) THEN
         ILQ = .FALSE.
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'U' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 2
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 3
      ELSE
         ICOMPQ = 0
      END IF
C
C     Decode COMPZ.
C
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ILZ = .FALSE.
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'U' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 2
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 3
      ELSE
         ICOMPZ = 0
      END IF
C
C     Test the input scalar parameters.
C
      INFO = 0
      IF( ICOMPQ.LE.0 ) THEN
         INFO = -1
      ELSE IF( ICOMPZ.LE.0 ) THEN
         INFO = -2
      ELSE IF( L.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M1.LT.0 ) THEN
         INFO = -5
      ELSE IF( M2.LT.0 ) THEN
         INFO = -6
      ELSE IF( P.LT.0 ) THEN
         INFO = -7
      ELSE IF( N1.LT.0 .OR. N1.GT.MIN( L, N ) ) THEN
         INFO = -8
      ELSE IF( LBE.LT.0 .OR. LBE.GT.MAX( 0, N1-1 ) ) THEN
         INFO = -9
      ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
         INFO = -11
      ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
         INFO = -13
      ELSE IF( LDB.LT.MAX( 1, L ) ) THEN
         INFO = -15
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -17
      ELSE IF( ( ILQ .AND. LDQ.LT.L ) .OR. LDQ.LT.1 ) THEN
         INFO = -19
      ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
         INFO = -21
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -25
      ELSE
         M = M1 + M2
         IF( MIN( N1, M ).EQ.0 ) THEN
            MINWRK = 1
         ELSE IF( LBE.GT.0 .AND. N1.GT.2 ) THEN
            MINWRK = MAX( N1 + MAX( L, N, M ), 2*M )
         ELSE
            MINWRK = MAX( 1, L, N, 2*M )
         END IF
C
         LQUERY = LDWORK.EQ.-1
         IF( LQUERY ) THEN
            IF( LBE.GT.0 .AND. N1.GT.2 ) THEN
               CALL DGEQRF( N1, N1, E, LDE, DWORK, DWORK, -1, INFO )
               WRKOPT = MAX( MINWRK, N1 + INT( DWORK(1) ) )
               CALL DORMQR( 'Left', 'Transpose', N1, N, N1, E, LDE,
     $                      DWORK, A, LDA, DWORK, -1, INFO )
               WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(1) ) )
               CALL DORMQR( 'Left', 'Transpose', N1, M, N1, E, LDE,
     $                      DWORK, B, LDB, DWORK, -1, INFO )
               WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(1) ) )
               IF( ILQ ) THEN
                  CALL DORMQR( 'Right', 'NoTranspose', L, N1, N1, E,
     $                         LDE, DWORK, Q, LDQ, DWORK, -1, INFO )
                  WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(1) ) )
               END IF
            ELSE
               WRKOPT = MINWRK
            END IF
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -28
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01HU', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Initialize Q and Z if necessary.
C
      IF( ICOMPQ.EQ.3 )
     $   CALL DLASET( 'Full', L, L, ZERO, ONE, Q, LDQ )
      IF( ICOMPZ.EQ.3 )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
C
C     Initialize output variables.
C
      NR = 0
      NRBLCK = 0
C
C     Quick return if possible.
C
      IF( MIN( N1, M ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      TOLZ   = DLAMCH( 'Precision' )
      WITHC  = P.GT.0
      SVLMAX = DLANGE( 'F', L, M, B, LDB, DWORK )
      RCOND  = TOL
      IF ( RCOND.LE.ZERO ) THEN
C
C        Use the default tolerance in controllability determination.
C
         RCOND = DBLE( L*N )*TOLZ
      END IF
      TOLZ = SQRT( TOLZ )
C
      IF ( SVLMAX.LT.RCOND )
     $   SVLMAX = ONE
      SVMR = SVLMAX*RCOND
      SVMA = MAX( ONE, DLANGE( 'F', L, N, A, LDA, DWORK ) )*RCOND
      IF( SVMA.GT.SVMR*TOLZ )
     $    SVMA = DLAPY2( SVMR, SVMA )
      NX = ILAENV( 3, 'DGEQRF', ' ', N1, N1, -1, -1 )
      NB = LDWORK/N1
C
C     Reduce E to upper triangular form if necessary.
C
      IF( LBE.GT.NX/2 .AND. MIN( NB, N1 ).GE.NX ) THEN
C
C        If E1 is a rather full matrix of enough size, use its
C        QR decomposition and apply it to A, B, and Q (if needed).
C        Workspace:  need    2*N1;
C                    prefer  N1 + N1*NB.
C
         CALL DGEQRF( N1, N1, E, LDE, DWORK, DWORK(N1+1), LDWORK-N1,
     $                INFO )
         WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(N1+1) ) )
C
C        Workspace:  need    N1 + N;
C                    prefer  N1 + N*NB.
C
         CALL DORMQR( 'Left', 'Transpose', N1, N, N1, E, LDE, DWORK, A,
     $                LDA, DWORK(N1+1), LDWORK-N1, INFO )
         WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(N1+1) ) )
C
C        Workspace:  need    N1 + M;
C                    prefer  N1 + M*NB.
C
         CALL DORMQR( 'Left', 'Transpose', N1, M, N1, E, LDE, DWORK, B,
     $                LDB, DWORK(N1+1), LDWORK-N1, INFO )
         WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(N1+1) ) )
         IF( ILQ ) THEN
C
C           Workspace:  need    N1 + L;
C                       prefer  N1 + L*NB.
C
            CALL DORMQR( 'Right', 'NoTranspose', L, N1, N1, E, LDE,
     $                   DWORK, Q, LDQ, DWORK(N1+1), LDWORK-N1, INFO )
            WRKOPT = MAX( WRKOPT, N1 + INT( DWORK(N1+1) ) )
         END IF
         CALL DLASET( 'Lower', N1-1, N1-1, ZERO, ZERO, E(2,1), LDE )
      ELSE IF( LBE.GT.0 .AND. N1.GT.1 ) THEN
         DO 10 I = 1, N1 - 1
C
C           Generate elementary reflector H(i) to annihilate
C           E(i+1:i+lbe,i).
C
            K = MIN( LBE, N1-I ) + 1
            CALL DLARFG( K, E(I,I), E(I+1,I), 1, TT )
            T = E(I,I)
            E(I,I) = ONE
C
C           Apply H(i) to E(i:n1,i+1:n) from the left.
C
            CALL DLARF( 'Left', K, N-I, E(I,I), 1, TT,
     $                  E(I,I+1), LDE, DWORK )
C
C           Apply H(i) to A(i:n1,1:n) from the left.
C
            CALL DLARF( 'Left', K, N, E(I,I), 1, TT,
     $                  A(I,1), LDA, DWORK )
C
C           Apply H(i) to B(i:n1,1:m) from the left.
C
            CALL DLARF( 'Left', K, M, E(I,I), 1, TT,
     $                  B(I,1), LDB, DWORK )
            IF( ILQ ) THEN
C
C              Apply H(i) to Q(1:l,i:n1) from the right.
C
               CALL DLARF( 'Right', L, K, E(I,I), 1, TT,
     $                     Q(1,I), LDQ, DWORK )
            END IF
            E(I,I) = T
   10    CONTINUE
         CALL DLASET( 'Lower', N1-1, N1-1, ZERO, ZERO, E(2,1), LDE )
      END IF
C
      MCRT1 = M1
      MCRT2 = M2
      MCRT  = MCRT1
      B1RED = .TRUE.
      ISMIN = 1
      ISMAX = ISMIN + M
C
      IC  = 0
      NF  = N1
      JB2 = M
C
   20 CONTINUE
      IF( NF.EQ.0 .AND. B1RED )
     $   GO TO 120
      NRBLCK = NRBLCK + 1
      RANK   = 0
C
      IF( NF.GT.0 ) THEN
C
C        IROW will point to the current pivot line in B,
C        ICOL+1 will point to the first active columns of A.
C
         ICOL = IC
         IROW = NR
         NR1  = NR + 1
         IF( NRBLCK.EQ.2 ) THEN
            CALL DLACPY( 'Full', NF, M2, B(NR1,M1+1), LDB,
     $                   B(NR1,1), LDB )
            JB2 = MCRT
         ELSEIF( NRBLCK.GT.2 ) THEN
            CALL DLACPY( 'Full', NF, MCRT, A(NR1,IC+1), LDA,
     $                   B(NR1,1), LDB )
            ICOL = IC + MCRT
            SVMR = SVMA
            JB2  = MCRT
         ENDIF
         ONECOL = MCRT.EQ.1
C
C        Perform QR-decomposition with column pivoting on the current B
C        while keeping E upper triangular.
C        The current B is at first iteration B1, at second iteration B2
C        and for subsequent iterations the NF-by-MCRT matrix delimited
C        by rows NR + 1 to N1 and columns IC + 1 to IC + MCRT of A.
C        The rank of current B is computed in RANK.
C
         IF( ONECOL ) THEN
            MN = 1
         ELSE
            MN = MIN( NF, MCRT )
C
C           Compute column norms.
C
            DO 30 J = 1, MCRT
               DWORK(J)   = DNRM2( NF, B(NR1,J), 1 )
               DWORK(M+J) = DWORK(J)
               IWORK(J)   = J
   30       CONTINUE
         END IF
C
   40    CONTINUE
         IF( RANK.LT.MN ) THEN
            J    = RANK + 1
            IROW = IROW + 1
C
C           Pivot if necessary.
C
            IF( J.NE.MCRT ) THEN
               K = ( J - 1 ) + IDAMAX( MCRT-J+1, DWORK(J), 1 )
               IF( K.NE.J ) THEN
                  CALL DSWAP( NF, B(NR1,J), 1, B(NR1,K), 1 )
                  I = IWORK(K)
                  IWORK(K)   = IWORK(J)
                  IWORK(J)   = I
                  DWORK(K)   = DWORK(J)
                  DWORK(M+K) = DWORK(M+J)
               END IF
            END IF
C
C           Zero elements below the current diagonal element of B.
C
            DO 50 I = N1-1, IROW, -1
C
C              Rotate rows I and I+1 to zero B(I+1,J).
C
               T = B(I,J)
               CALL DLARTG( T, B(I+1,J), CO, SI, B(I,J) )
               B(I+1,J) = ZERO
               CALL DROT( N-I+1, E(I,I), LDE, E(I+1,I), LDE, CO, SI )
               IF( J.LT.JB2 )
     $             CALL DROT( JB2-J, B(I,J+1), LDB, B(I+1,J+1), LDB, CO,
     $                        SI )
               CALL DROT( N-ICOL, A(I,ICOL+1), LDA, A(I+1,ICOL+1), LDA,
     $                    CO, SI )
               IF( ILQ )
     $            CALL DROT( L, Q(1,I), 1, Q(1,I+1), 1, CO, SI )
C
C              Rotate columns I, I+1 to zero E(I+1,I).
C
               T = E(I+1,I+1)
               CALL DLARTG( T, E(I+1,I), CO, SI, E(I+1,I+1) )
               E(I+1,I) = ZERO
               CALL DROT( I,  E(1,I+1), 1, E(1,I), 1, CO, SI )
               CALL DROT( N1, A(1,I+1), 1, A(1,I), 1, CO, SI )
               IF( ILZ )
     $            CALL DROT( N, Z(1,I+1), 1, Z(1,I), 1, CO, SI )
               IF( WITHC )
     $            CALL DROT( P, C(1,I+1), 1, C(1,I), 1, CO, SI )
   50       CONTINUE
C
            IF( RANK.EQ.0 ) THEN
C
C              Initialize; exit if matrix is zero (RANK = 0).
C              Short pass if the current B has one column.
C
               SMAX = ABS( B(NR1,1) )
               IF ( SMAX.LE.SVMR ) THEN
                  GO TO 80
                ELSE IF ( ONECOL ) THEN
                  RANK = RANK + 1
                  GO TO 80
               END IF
               SMIN   = SMAX
               SMAXPR = SMAX
               SMINPR = SMIN
               C1 = ONE
               C2 = ONE
            ELSE
C
C              One step of incremental condition estimation.
C
               CALL DLAIC1( IMIN, RANK, DWORK(ISMIN), SMIN, B(NR1,J),
     $                      B(IROW,J), SMINPR, S1, C1 )
               CALL DLAIC1( IMAX, RANK, DWORK(ISMAX), SMAX, B(NR1,J),
     $                      B(IROW,J), SMAXPR, S2, C2 )
            END IF
C
C           Check the rank; finish the loop if rank loss occurs.
C
            IF( SVMR.LE.SMAXPR ) THEN
               IF( SMAXPR*RCOND.LT.SMINPR ) THEN
C
C                 Finish the loop if last row.
C
                  IF( IROW.EQ.N1 ) THEN
                     RANK = RANK + 1
                     GO TO 80
                  END IF
C
C                 Update partial column norms.
C
                  DO 60 I = J + 1, MCRT
                     IF( DWORK(I).NE.ZERO ) THEN
                        T = ABS( B(IROW,I) )/DWORK(I)
                        T = MAX( ( ONE + T )*( ONE - T ), ZERO)
                        TT = T*( DWORK(I)/DWORK(M+I) )**2
                        IF( TT.GT.TOLZ ) THEN
                           DWORK(I) = DWORK(I)*SQRT( T )
                        ELSE
                           DWORK(I) = DNRM2( NF-J, B(IROW+1,I), 1 )
                           DWORK(M+I) = DWORK(I)
                        END IF
                     END IF
   60             CONTINUE
C
                  DO 70 I = 1, RANK
                     DWORK(ISMIN+I-1) = S1*DWORK(ISMIN+I-1)
                     DWORK(ISMAX+I-1) = S2*DWORK(ISMAX+I-1)
   70             CONTINUE
C
                  DWORK(ISMIN+RANK) = C1
                  DWORK(ISMAX+RANK) = C2
                  SMIN = SMINPR
                  SMAX = SMAXPR
                  RANK = RANK + 1
                  GO TO 40
               END IF
            END IF
         END IF
      END IF
C
   80 CONTINUE
C
      IF( RANK.GT.0 ) THEN
         RTAU(NRBLCK) = RANK
C
C        Back permute interchanged columns.
C
         IF( .NOT.ONECOL ) THEN
            DO 100 J = 1, MCRT
               IF( IWORK(J).GT.0 ) THEN
                  K = IWORK(J)
                  IWORK(J) = -K
   90             CONTINUE
                  IF( K.NE.J ) THEN
                     CALL DSWAP( RANK, B(NR1,J), 1, B(NR1,K), 1 )
                     IWORK(K) = -IWORK(K)
                     K = -IWORK(K)
                     GO TO 90
                  END IF
               END IF
  100       CONTINUE
         END IF
      END IF
      IF( NRBLCK.EQ.2 ) THEN
         DO 110 J = M2, 1, -1
            CALL DCOPY( NF, B(NR1,J), 1, B(NR1,M1+J), 1 )
  110    CONTINUE
      ELSEIF( NRBLCK.GT.2 ) THEN
         CALL DLACPY( 'Full', NF, MCRT, B(NR1,1), LDB, A(NR1,IC+1),
     $                LDA )
      END IF		
      IF( RANK.GT.0 ) THEN
         NR = NR + RANK
         NF = NF - RANK
         IF( NRBLCK.GT.2 )
     $      IC = IC + MCRT
         IF( B1RED ) THEN
            MCRT1 = RANK
            MCRT  = MCRT2
         ELSE
            MCRT2 = RANK
            MCRT  = MCRT1
         END IF
         B1RED = .NOT.B1RED
         GO TO 20
      ELSE
         IF( B1RED ) THEN
            IF( MCRT2.GT.0 ) THEN
               B1RED = .NOT.B1RED
               RTAU(NRBLCK) = 0
               IF( NRBLCK.GT.2 )
     $            IC = IC + MCRT
               MCRT1 = 0
               MCRT  = MCRT2
               GO TO 20
            END IF
            NRBLCK = NRBLCK - 1
         ELSE
            IF( MCRT1.GT.0 ) THEN
               B1RED = .NOT.B1RED
               RTAU(NRBLCK) = 0
               IF( NRBLCK.GT.2 )
     $            IC = IC + MCRT
               MCRT2 = 0
               MCRT  = MCRT1
               GO TO 20
            END IF
            NRBLCK = NRBLCK - 2
         END IF
      END IF
C
  120 CONTINUE
C
      IF( NRBLCK.GT.0 ) THEN
C
         RANK = RTAU(1)
         IF( RANK.LT.N1 )
     $      CALL DLASET( 'Full', N1-RANK, M1, ZERO, ZERO, B(RANK+1,1),
     $                   LDB )
         RANK = RANK + RTAU(2)
         IF( RANK.LT.N1 )
     $      CALL DLASET( 'Full', N1-RANK, M2, ZERO, ZERO,
     $                   B(RANK+1,M1+1), LDB )
      END IF
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of TG01HU ***
      END