control_systems_torbox 0.2.1

Control systems toolbox
Documentation
      SUBROUTINE SB04RX( RC, UL, M, A, LDA, LAMBD1, LAMBD2, LAMBD3,
     $                   LAMBD4, D, TOL, IWORK, DWORK, LDDWOR, INFO )
C
C     PURPOSE
C
C     To solve a system of equations in quasi-Hessenberg form
C     (Hessenberg form plus two consecutive offdiagonals) with two
C     right-hand sides.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     RC      CHARACTER*1
C             Indicates processing by columns or rows, as follows:
C             = 'R':  Row transformations are applied;
C             = 'C':  Column transformations are applied.
C
C     UL      CHARACTER*1
C             Indicates whether A is upper or lower Hessenberg matrix,
C             as follows:
C             = 'U':  A is upper Hessenberg;
C             = 'L':  A is lower Hessenberg.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The order of the matrix A.  M >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             The leading M-by-M part of this array must contain a
C             matrix A in Hessenberg form.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     LAMBD1, (input) DOUBLE PRECISION
C     LAMBD2, These variables must contain the 2-by-2 block to be
C     LAMBD3, multiplied to the elements of A.
C     LAMBD4
C
C     D       (input/output) DOUBLE PRECISION array, dimension (2*M)
C             On entry, this array must contain the two right-hand
C             side vectors of the quasi-Hessenberg system, stored
C             row-wise.
C             On exit, if INFO = 0, this array contains the two solution
C             vectors of the quasi-Hessenberg system, stored row-wise.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used to test for near singularity of
C             the triangular factor R of the quasi-Hessenberg matrix.
C             A matrix whose estimated condition number is less
C             than 1/TOL is considered to be nonsingular.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (2*M)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDDWOR,2*M+3)
C             The leading 2*M-by-2*M part of this array is used for
C             computing the triangular factor of the QR decomposition
C             of the quasi-Hessenberg matrix. The remaining 6*M elements
C             are used as workspace for the computation of the
C             reciprocal condition estimate.
C
C     LDDWOR  INTEGER
C             The leading dimension of array DWORK.
C             LDDWOR >= MAX(1,2*M).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  if the quasi-Hessenberg matrix is (numerically)
C                   singular. That is, its estimated reciprocal
C                   condition number is less than or equal to TOL.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2000.
C
C     REVISIONS
C
C     -
C
C     Note that RC, UL, M, LDA, and LDDWOR must be such that the value
C     of the LOGICAL variable OK in the following statement is true.
C
C      OK = ( ( UL.EQ.'U' ) .OR. ( UL.EQ.'u' ) .OR.
C             ( UL.EQ.'L' ) .OR. ( UL.EQ.'l' ) )
C           .AND.
C           ( ( RC.EQ.'R' ) .OR. ( RC.EQ.'r' ) .OR.
C             ( RC.EQ.'C' ) .OR. ( RC.EQ.'c' ) )
C           .AND.
C           ( M.GE.0 )
C           .AND.
C           ( LDA.GE.MAX( 1, M ) )
C           .AND.
C           ( LDDWOR.GE.MAX( 1, 2*M ) )
C
C     These conditions are not checked by the routine.
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         RC, UL
      INTEGER           INFO, LDA, LDDWOR, M
      DOUBLE PRECISION  LAMBD1, LAMBD2, LAMBD3, LAMBD4, TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), D(*), DWORK(LDDWOR,*)
C     .. Local Scalars ..
      CHARACTER         TRANS
      INTEGER           J, J1, J2, M2, MJ, ML
      DOUBLE PRECISION  C, R, RCOND, S
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLARTG, DLASET, DROT, DSCAL, DTRCON,
     $                  DTRSV
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN, MOD
C     .. Executable Statements ..
C
      INFO = 0
C
C     For speed, no tests on the input scalar arguments are made.
C     Quick return if possible.
C
      IF ( M.EQ.0 )
     $   RETURN
C
      M2 = M*2
      IF ( LSAME( UL, 'U' ) ) THEN
C
         DO 20 J = 1, M
            J2 = J*2
            ML = MIN( M, J + 1 )
            CALL DLASET( 'Full', M2, 2, ZERO, ZERO, DWORK(1,J2-1),
     $                   LDDWOR )
            CALL DCOPY( ML, A(1,J), 1, DWORK(1,J2-1), 2 )
            CALL DSCAL( ML, LAMBD1, DWORK(1,J2-1), 2 )
            CALL DCOPY( ML, A(1,J), 1, DWORK(2,J2-1), 2 )
            CALL DSCAL( ML, LAMBD3, DWORK(2,J2-1), 2 )
            CALL DCOPY( ML, A(1,J), 1, DWORK(1,J2), 2 )
            CALL DSCAL( ML, LAMBD2, DWORK(1,J2), 2 )
            CALL DCOPY( ML, A(1,J), 1, DWORK(2,J2), 2 )
            CALL DSCAL( ML, LAMBD4, DWORK(2,J2), 2 )
C
            DWORK(J2-1,J2-1) = DWORK(J2-1,J2-1) + ONE
            DWORK(J2,J2) = DWORK(J2,J2) + ONE
   20    CONTINUE
C
         IF ( LSAME( RC, 'R' ) ) THEN
            TRANS = 'N'
C
C           A is an upper Hessenberg matrix, row transformations.
C
            DO 40 J = 1, M2 - 1
               MJ = M2 - J
               IF ( MOD(J,2).EQ.1 .AND. J.LT.M2-2 ) THEN
                  IF ( DWORK(J+3,J).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(J+2,J), DWORK(J+3,J), C, S, R )
                     DWORK(J+2,J) = R
                     DWORK(J+3,J) = ZERO
                     CALL DROT( MJ, DWORK(J+2,J+1), LDDWOR,
     $                          DWORK(J+3,J+1), LDDWOR, C, S )
                     CALL DROT( 1, D(J+2), 1, D(J+3), 1, C, S )
                  END IF
               END IF
               IF ( J.LT.M2-1 ) THEN
                  IF ( DWORK(J+2,J).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(J+1,J), DWORK(J+2,J), C, S, R )
                     DWORK(J+1,J) = R
                     DWORK(J+2,J) = ZERO
                     CALL DROT( MJ, DWORK(J+1,J+1), LDDWOR,
     $                          DWORK(J+2,J+1), LDDWOR, C, S )
                     CALL DROT( 1, D(J+1), 1, D(J+2), 1, C, S )
                  END IF
               END IF
               IF ( DWORK(J+1,J).NE.ZERO ) THEN
                  CALL DLARTG( DWORK(J,J), DWORK(J+1,J), C, S, R )
                  DWORK(J,J)   = R
                  DWORK(J+1,J) = ZERO
                  CALL DROT( MJ, DWORK(J,J+1), LDDWOR, DWORK(J+1,J+1),
     $                       LDDWOR, C, S )
                  CALL DROT( 1, D(J), 1, D(J+1), 1, C, S )
               END IF
   40       CONTINUE
C
         ELSE
            TRANS = 'T'
C
C           A is an upper Hessenberg matrix, column transformations.
C
            DO 60 J = 1, M2 - 1
               MJ = M2 - J
               IF ( MOD(J,2).EQ.1 .AND. J.LT.M2-2 ) THEN
                  IF ( DWORK(MJ+1,MJ-2).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(MJ+1,MJ-1), DWORK(MJ+1,MJ-2), C,
     $                            S, R )
                     DWORK(MJ+1,MJ-1) = R
                     DWORK(MJ+1,MJ-2) = ZERO
                     CALL DROT( MJ, DWORK(1,MJ-1), 1, DWORK(1,MJ-2), 1,
     $                          C, S )
                     CALL DROT( 1, D(MJ-1), 1, D(MJ-2), 1, C, S )
                  END IF
               END IF
               IF ( J.LT.M2-1 ) THEN
                  IF ( DWORK(MJ+1,MJ-1).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(MJ+1,MJ), DWORK(MJ+1,MJ-1), C,
     $                            S, R )
                     DWORK(MJ+1,MJ)   = R
                     DWORK(MJ+1,MJ-1) = ZERO
                     CALL DROT( MJ, DWORK(1,MJ), 1, DWORK(1,MJ-1), 1, C,
     $                          S )
                     CALL DROT( 1, D(MJ), 1, D(MJ-1), 1, C, S )
                  END IF
               END IF
               IF ( DWORK(MJ+1,MJ).NE.ZERO ) THEN
                  CALL DLARTG( DWORK(MJ+1,MJ+1), DWORK(MJ+1,MJ), C, S,
     $                         R )
                  DWORK(MJ+1,MJ+1) = R
                  DWORK(MJ+1,MJ)   = ZERO
                  CALL DROT( MJ, DWORK(1,MJ+1), 1, DWORK(1,MJ), 1, C,
     $                       S )
                  CALL DROT( 1, D(MJ+1), 1, D(MJ), 1, C, S )
               END IF
   60       CONTINUE
C
         END IF
      ELSE
C
         DO 80 J = 1, M
            J2 = J*2
            J1 = MAX( J - 1, 1 )
            ML = MIN( M - J + 2, M )
            CALL DLASET( 'Full', M2, 2, ZERO, ZERO, DWORK(1,J2-1),
     $                   LDDWOR )
            CALL DCOPY( ML, A(J1,J), 1, DWORK(J1*2-1,J2-1), 2 )
            CALL DSCAL( ML, LAMBD1, DWORK(J1*2-1,J2-1), 2 )
            CALL DCOPY( ML, A(J1,J), 1, DWORK(J1*2,J2-1), 2 )
            CALL DSCAL( ML, LAMBD3, DWORK(J1*2,J2-1), 2 )
            CALL DCOPY( ML, A(J1,J), 1, DWORK(J1*2-1,J2), 2 )
            CALL DSCAL( ML, LAMBD2, DWORK(J1*2-1,J2), 2 )
            CALL DCOPY( ML, A(J1,J), 1, DWORK(J1*2,J2), 2 )
            CALL DSCAL( ML, LAMBD4, DWORK(J1*2,J2), 2 )
C
            DWORK(J2-1,J2-1) = DWORK(J2-1,J2-1) + ONE
            DWORK(J2,J2) = DWORK(J2,J2) + ONE
   80    CONTINUE
C
         IF ( LSAME( RC, 'R' ) ) THEN
            TRANS = 'N'
C
C           A is a lower Hessenberg matrix, row transformations.
C
            DO 100 J = 1, M2 - 1
               MJ = M2 - J
               IF ( MOD(J,2).EQ.1 .AND. J.LT.M2-2 ) THEN
                  IF ( DWORK(MJ-2,MJ+1).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(MJ-1,MJ+1), DWORK(MJ-2,MJ+1), C,
     $                            S, R )
                     DWORK(MJ-1,MJ+1) = R
                     DWORK(MJ-2,MJ+1) = ZERO
                     CALL DROT( MJ, DWORK(MJ-1,1), LDDWOR,
     $                          DWORK(MJ-2,1), LDDWOR, C, S )
                     CALL DROT( 1, D(MJ-1), 1, D(MJ-2), 1, C, S )
                  END IF
               END IF
               IF ( J.LT.M2-1 ) THEN
                  IF ( DWORK(MJ-1,MJ+1).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(MJ,MJ+1), DWORK(MJ-1,MJ+1), C,
     $                           S, R )
                     DWORK(MJ,MJ+1)   = R
                     DWORK(MJ-1,MJ+1) = ZERO
                     CALL DROT( MJ, DWORK(MJ,1), LDDWOR, DWORK(MJ-1,1),
     $                          LDDWOR, C, S )
                     CALL DROT( 1, D(MJ), 1, D(MJ-1), 1, C, S )
                  END IF
               END IF
               IF ( DWORK(MJ,MJ+1).NE.ZERO ) THEN
                  CALL DLARTG( DWORK(MJ+1,MJ+1), DWORK(MJ,MJ+1), C, S,
     $                        R )
                  DWORK(MJ+1,MJ+1) = R
                  DWORK(MJ,MJ+1)   = ZERO
                  CALL DROT( MJ, DWORK(MJ+1,1), LDDWOR, DWORK(MJ,1),
     $                       LDDWOR, C, S)
                  CALL DROT( 1, D(MJ+1), 1, D(MJ), 1, C, S )
               END IF
  100       CONTINUE
C
         ELSE
            TRANS = 'T'
C
C           A is a lower Hessenberg matrix, column transformations.
C
            DO 120 J = 1, M2 - 1
               MJ = M2 - J
               IF ( MOD(J,2).EQ.1 .AND. J.LT.M2-2 ) THEN
                  IF ( DWORK(J,J+3).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(J,J+2), DWORK(J,J+3), C, S, R )
                     DWORK(J,J+2) = R
                     DWORK(J,J+3) = ZERO
                     CALL DROT( MJ, DWORK(J+1,J+2), 1, DWORK(J+1,J+3),
     $                          1, C, S )
                     CALL DROT( 1, D(J+2), 1, D(J+3), 1, C, S )
                  END IF
               END IF
               IF ( J.LT.M2-1 ) THEN
                  IF ( DWORK(J,J+2).NE.ZERO ) THEN
                     CALL DLARTG( DWORK(J,J+1), DWORK(J,J+2), C, S, R )
                     DWORK(J,J+1) = R
                     DWORK(J,J+2) = ZERO
                     CALL DROT( MJ, DWORK(J+1,J+1), 1, DWORK(J+1,J+2),
     $                          1, C, S )
                     CALL DROT( 1, D(J+1), 1, D(J+2), 1, C, S )
                  END IF
               END IF
               IF ( DWORK(J,J+1).NE.ZERO ) THEN
                  CALL DLARTG( DWORK(J,J), DWORK(J,J+1), C, S, R )
                  DWORK(J,J)   = R
                  DWORK(J,J+1) = ZERO
                  CALL DROT( MJ, DWORK(J+1,J), 1, DWORK(J+1,J+1), 1, C,
     $                       S )
                  CALL DROT( 1, D(J), 1, D(J+1), 1, C, S )
               END IF
  120       CONTINUE
C
         END IF
      END IF
C
      CALL DTRCON( '1-norm', UL, 'Non-unit', M2, DWORK, LDDWOR, RCOND,
     $             DWORK(1,M2+1), IWORK, INFO )
      IF ( RCOND.LE.TOL ) THEN
         INFO = 1
      ELSE
         CALL DTRSV( UL, TRANS, 'Non-unit', M2, DWORK, LDDWOR, D, 1 )
      END IF
C
      RETURN
C *** Last line of SB04RX ***
      END