control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
      SUBROUTINE AB09KD( JOB, DICO, WEIGHT, EQUIL, ORDSEL, N, NV, NW, M,
     $                   P, NR, ALPHA, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
     $                   AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
     $                   NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
     $                   IWARN, INFO )
C
C     PURPOSE
C
C     To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C     state-space representation (A,B,C,D) by using the frequency
C     weighted optimal Hankel-norm approximation method.
C     The Hankel norm of the weighted error
C
C           V*(G-Gr)*W    or    conj(V)*(G-Gr)*conj(W)
C
C     is minimized, where G and Gr are the transfer-function matrices
C     of the original and reduced systems, respectively, and V and W
C     are the transfer-function matrices of the left and right frequency
C     weights, specified by their state space realizations (AV,BV,CV,DV)
C     and (AW,BW,CW,DW), respectively. When minimizing the weighted
C     error V*(G-Gr)*W, V and W must be antistable transfer-function
C     matrices. When minimizing conj(V)*(G-Gr)*conj(W), V and W must be
C     stable transfer-function matrices.
C     Additionally, V and W must be invertible transfer-function
C     matrices, with the feedthrough matrices DV and DW invertible.
C     If the original system is unstable, then the frequency weighted
C     Hankel-norm approximation is computed only for the
C     ALPHA-stable part of the system.
C
C     For a transfer-function matrix G, conj(G) denotes the conjugate
C     of G given by G'(-s) for a continuous-time system or G'(1/z)
C     for a discrete-time system.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the frequency-weighting problem as follows:
C             = 'N':  solve min||V*(G-Gr)*W||_H;
C             = 'C':  solve min||conj(V)*(G-Gr)*conj(W)||_H.
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     WEIGHT  CHARACTER*1
C             Specifies the type of frequency weighting, as follows:
C             = 'N':  no weightings are used (V = I, W = I);
C             = 'L':  only left weighting V is used (W = I);
C             = 'R':  only right weighting W is used (V = I);
C             = 'B':  both left and right weightings V and W are used.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to preliminarily
C             equilibrate the triplet (A,B,C) as follows:
C             = 'S':  perform equilibration (scaling);
C             = 'N':  do not perform equilibration.
C
C     ORDSEL  CHARACTER*1
C             Specifies the order selection method as follows:
C             = 'F':  the resulting order NR is fixed;
C             = 'A':  the resulting order NR is automatically determined
C                     on basis of the given tolerance TOL1.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation,
C             i.e., the order of the matrix A.  N >= 0.
C
C     NV      (input) INTEGER
C             The order of the realization of the left frequency
C             weighting V, i.e., the order of the matrix AV.  NV >= 0.
C
C     NW      (input) INTEGER
C             The order of the realization of the right frequency
C             weighting W, i.e., the order of the matrix AW.  NW >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NR      (input/output) INTEGER
C             On entry with ORDSEL = 'F', NR is the desired order of
C             the resulting reduced order system.  0 <= NR <= N.
C             On exit, if INFO = 0, NR is the order of the resulting
C             reduced order model. For a system with NU ALPHA-unstable
C             eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C             NR is set as follows: if ORDSEL = 'F', NR is equal to
C             NU+MIN(MAX(0,NR-NU-KR+1),NMIN), where KR is the
C             multiplicity of the Hankel singular value HSV(NR-NU+1),
C             NR is the desired order on entry, and NMIN is the order
C             of a minimal realization of the ALPHA-stable part of the
C             given system; NMIN is determined as the number of Hankel
C             singular values greater than NS*EPS*HNORM(As,Bs,Cs), where
C             EPS is the machine precision (see LAPACK Library Routine
C             DLAMCH) and HNORM(As,Bs,Cs) is the Hankel norm of the
C             ALPHA-stable part of the weighted system (computed in
C             HSV(1));
C             if ORDSEL = 'A', NR is the sum of NU and the number of
C             Hankel singular values greater than
C             MAX(TOL1,NS*EPS*HNORM(As,Bs,Cs)).
C
C     ALPHA   (input) DOUBLE PRECISION
C             Specifies the ALPHA-stability boundary for the eigenvalues
C             of the state dynamics matrix A. For a continuous-time
C             system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C             the real parts of eigenvalues, while for a discrete-time
C             system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C             boundary value for the moduli of eigenvalues.
C             The ALPHA-stability domain does not include the boundary.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, if INFO = 0, the leading NR-by-NR part of this
C             array contains the state dynamics matrix Ar of the
C             reduced order system in a real Schur form.
C             The resulting A has a block-diagonal form with two blocks.
C             For a system with NU ALPHA-unstable eigenvalues and
C             NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C             NU-by-NU block contains the unreduced part of A
C             corresponding to ALPHA-unstable eigenvalues.
C             The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C             the reduced part of A corresponding to ALPHA-stable
C             eigenvalues.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, if INFO = 0, the leading NR-by-M part of this
C             array contains the input/state matrix Br of the reduced
C             order system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, if INFO = 0, the leading P-by-NR part of this
C             array contains the state/output matrix Cr of the reduced
C             order system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original input/output matrix D.
C             On exit, if INFO = 0, the leading P-by-M part of this
C             array contains the input/output matrix Dr of the reduced
C             order system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     AV      (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C             On entry, if WEIGHT = 'L' or 'B', the leading NV-by-NV
C             part of this array must contain the state matrix AV of a
C             state space realization of the left frequency weighting V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             NV-by-NV part of this array contains a real Schur form
C             of the state matrix of a state space realization of the
C             inverse of V.
C             AV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDAV    INTEGER
C             The leading dimension of the array AV.
C             LDAV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C             LDAV >= 1,         if WEIGHT = 'R' or 'N'.
C
C     BV      (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C             On entry, if WEIGHT = 'L' or 'B', the leading NV-by-P part
C             of this array must contain the input matrix BV of a state
C             space realization of the left frequency weighting V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             NV-by-P part of this array contains the input matrix of a
C             state space realization of the inverse of V.
C             BV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDBV    INTEGER
C             The leading dimension of the array BV.
C             LDBV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C             LDBV >= 1,         if WEIGHT = 'R' or 'N'.
C
C     CV      (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C             On entry, if WEIGHT = 'L' or 'B', the leading P-by-NV part
C             of this array must contain the output matrix CV of a state
C             space realization of the left frequency weighting V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             P-by-NV part of this array contains the output matrix of a
C             state space realization of the inverse of V.
C             CV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDCV    INTEGER
C             The leading dimension of the array CV.
C             LDCV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C             LDCV >= 1,        if WEIGHT = 'R' or 'N'.
C
C     DV      (input/output) DOUBLE PRECISION array, dimension (LDDV,P)
C             On entry, if WEIGHT = 'L' or 'B', the leading P-by-P part
C             of this array must contain the feedthrough matrix DV of a
C             state space realization of the left frequency weighting V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             P-by-P part of this array contains the feedthrough matrix
C             of a state space realization of the inverse of V.
C             DV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDDV    INTEGER
C             The leading dimension of the array DV.
C             LDDV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C             LDDV >= 1,        if WEIGHT = 'R' or 'N'.
C
C     AW      (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C             On entry, if WEIGHT = 'R' or 'B', the leading NW-by-NW
C             part of this array must contain the state matrix AW of
C             a state space realization of the right frequency
C             weighting W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             NW-by-NW part of this array contains a real Schur form of
C             the state matrix of a state space realization of the
C             inverse of W.
C             AW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDAW    INTEGER
C             The leading dimension of the array AW.
C             LDAW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C             LDAW >= 1,         if WEIGHT = 'L' or 'N'.
C
C     BW      (input/output) DOUBLE PRECISION array, dimension (LDBW,M)
C             On entry, if WEIGHT = 'R' or 'B', the leading NW-by-M part
C             of this array must contain the input matrix BW of a state
C             space realization of the right frequency weighting W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             NW-by-M part of this array contains the input matrix of a
C             state space realization of the inverse of W.
C             BW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDBW    INTEGER
C             The leading dimension of the array BW.
C             LDBW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C             LDBW >= 1,         if WEIGHT = 'L' or 'N'.
C
C     CW      (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C             On entry, if WEIGHT = 'R' or 'B', the leading M-by-NW part
C             of this array must contain the output matrix CW of a state
C             space realization of the right frequency weighting W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             M-by-NW part of this array contains the output matrix of a
C             state space realization of the inverse of W.
C             CW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDCW    INTEGER
C             The leading dimension of the array CW.
C             LDCW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C             LDCW >= 1,        if WEIGHT = 'L' or 'N'.
C
C     DW      (input/output) DOUBLE PRECISION array, dimension (LDDW,M)
C             On entry, if WEIGHT = 'R' or 'B', the leading M-by-M part
C             of this array must contain the feedthrough matrix DW of
C             a state space realization of the right frequency
C             weighting W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             M-by-M part of this array contains the feedthrough matrix
C             of a state space realization of the inverse of W.
C             DW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDDW    INTEGER
C             The leading dimension of the array DW.
C             LDDW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C             LDDW >= 1,        if WEIGHT = 'L' or 'N'.
C
C     NS      (output) INTEGER
C             The dimension of the ALPHA-stable subsystem.
C
C     HSV     (output) DOUBLE PRECISION array, dimension (N)
C             If INFO = 0, the leading NS elements of this array contain
C             the Hankel singular values, ordered decreasingly, of the
C             ALPHA-stable part of the weighted original system.
C             HSV(1) is the Hankel norm of the ALPHA-stable weighted
C             subsystem.
C
C     Tolerances
C
C     TOL1    DOUBLE PRECISION
C             If ORDSEL = 'A', TOL1 contains the tolerance for
C             determining the order of reduced system.
C             For model reduction, the recommended value is
C             TOL1 = c*HNORM(As,Bs,Cs), where c is a constant in the
C             interval [0.00001,0.001], and HNORM(As,Bs,Cs) is the
C             Hankel-norm of the ALPHA-stable part of the weighted
C             original system (computed in HSV(1)).
C             If TOL1 <= 0 on entry, the used default value is
C             TOL1 = NS*EPS*HNORM(As,Bs,Cs), where NS is the number of
C             ALPHA-stable eigenvalues of A and EPS is the machine
C             precision (see LAPACK Library Routine DLAMCH).
C             If ORDSEL = 'F', the value of TOL1 is ignored.
C
C     TOL2    DOUBLE PRECISION
C             The tolerance for determining the order of a minimal
C             realization of the ALPHA-stable part of the given system.
C             The recommended value is TOL2 = NS*EPS*HNORM(As,Bs,Cs).
C             This value is used by default if TOL2 <= 0 on entry.
C             If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             LIWORK = MAX(1,M,c),      if DICO = 'C',
C             LIWORK = MAX(1,N,M,c),    if DICO = 'D',
C             where  c = 0,             if WEIGHT = 'N',
C                    c = 2*P,           if WEIGHT = 'L',
C                    c = 2*M,           if WEIGHT = 'R',
C                    c = MAX(2*M,2*P),  if WEIGHT = 'B'.
C             On exit, if INFO = 0, IWORK(1) contains NMIN, the order of
C             the computed minimal realization.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( LDW1, LDW2, LDW3, LDW4 ), where
C             LDW1 = 0 if WEIGHT = 'R' or 'N' and
C             LDW1 = MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C                    if WEIGHT = 'L' or WEIGHT = 'B',
C             LDW2 = 0 if WEIGHT = 'L' or 'N' and
C             LDW2 = MAX( NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C                    if WEIGHT = 'R' or WEIGHT = 'B', with
C                a = 0,    b = 0,     if DICO = 'C' or  JOB = 'N',
C                a = 2*NV, b = 2*NW,  if DICO = 'D' and JOB = 'C';
C             LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C             LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C                    MAX( 3*M+1, MIN(N,M)+P ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  with ORDSEL = 'F', the selected order NR is greater
C                   than NSMIN, the sum of the order of the
C                   ALPHA-unstable part and the order of a minimal
C                   realization of the ALPHA-stable part of the given
C                   system; in this case, the resulting NR is set equal
C                   to NSMIN;
C             = 2:  with ORDSEL = 'F', the selected order NR is less
C                   than the order of the ALPHA-unstable part of the
C                   given system; in this case NR is set equal to the
C                   order of the ALPHA-unstable part.
C
C     Error Indicator
C
C     INFO    INTEGER
C             =  0:  successful exit;
C             <  0:  if INFO = -i, the i-th argument had an illegal
C                    value;
C             =  1:  the computation of the ordered real Schur form of A
C                    failed;
C             =  2:  the separation of the ALPHA-stable/unstable
C                    diagonal blocks failed because of very close
C                    eigenvalues;
C             =  3:  the reduction of AV or AV-BV*inv(DV)*CV to a
C                    real Schur form failed;
C             =  4:  the reduction of AW or AW-BW*inv(DW)*CW to a
C                    real Schur form failed;
C             =  5:  JOB = 'N' and AV is not antistable, or
C                    JOB = 'C' and AV is not stable;
C             =  6:  JOB = 'N' and AW is not antistable, or
C                    JOB = 'C' and AW is not stable;
C             =  7:  the computation of Hankel singular values failed;
C             =  8:  the computation of stable projection in the
C                    Hankel-norm approximation algorithm failed;
C             =  9:  the order of computed stable projection in the
C                    Hankel-norm approximation algorithm differs
C                    from the order of Hankel-norm approximation;
C             = 10:  DV is singular;
C             = 11:  DW is singular;
C             = 12:  the solution of the Sylvester equation failed
C                    because the zeros of V (if JOB = 'N') or of conj(V)
C                    (if JOB = 'C') are not distinct from the poles
C                    of G1sr (see METHOD);
C             = 13:  the solution of the Sylvester equation failed
C                    because the zeros of W (if JOB = 'N') or of conj(W)
C                    (if JOB = 'C') are not distinct from the poles
C                    of G1sr (see METHOD).
C
C     METHOD
C
C     Let G be the transfer-function matrix of the original
C     linear system
C
C          d[x(t)] = Ax(t) + Bu(t)
C          y(t)    = Cx(t) + Du(t),                          (1)
C
C     where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C     for a discrete-time system. The subroutine AB09KD determines
C     the matrices of a reduced order system
C
C          d[z(t)] = Ar*z(t) + Br*u(t)
C          yr(t)   = Cr*z(t) + Dr*u(t),                      (2)
C
C     such that the corresponding transfer-function matrix Gr minimizes
C     the Hankel-norm of the frequency-weighted error
C
C             V*(G-Gr)*W,                                    (3)
C     or
C             conj(V)*(G-Gr)*conj(W).                        (4)
C
C     For minimizing (3), V and W are assumed to be antistable, while
C     for minimizing (4), V and W are assumed to be stable transfer-
C     function matrices.
C
C     Note: conj(G) = G'(-s) for a continuous-time system and
C           conj(G) = G'(1/z) for a discrete-time system.
C
C     The following procedure is used to reduce G (see [1]):
C
C     1) Decompose additively G as
C
C          G = G1 + G2,
C
C        such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
C        G2 = (A2,B2,C2,0) has only ALPHA-unstable poles.
C
C     2) Compute G1s, the stable projection of V*G1*W or
C        conj(V)*G1*conj(W), using explicit formulas [4].
C
C     3) Determine G1sr, the optimal Hankel-norm approximation of G1s
C        of order r.
C
C     4) Compute G1r, the stable projection of either inv(V)*G1sr*inv(W)
C        or conj(inv(V))*G1sr*conj(inv(W)), using explicit formulas [4].
C
C     5) Assemble the reduced model Gr as
C
C           Gr = G1r + G2.
C
C     To reduce the weighted ALPHA-stable part G1s at step 3, the
C     optimal Hankel-norm approximation method of [2], based on the
C     square-root balancing projection formulas of [3], is employed.
C
C     The optimal weighted approximation error satisfies
C
C          HNORM[V*(G-Gr)*W] = S(r+1),
C     or
C          HNORM[conj(V)*(G-Gr)*conj(W)] = S(r+1),
C
C     where S(r+1) is the (r+1)-th Hankel singular value of G1s, the
C     transfer-function matrix computed at step 2 of the above
C     procedure, and HNORM(.) denotes the Hankel-norm.
C
C     REFERENCES
C
C     [1] Latham, G.A. and Anderson, B.D.O.
C         Frequency-weighted optimal Hankel-norm approximation of stable
C         transfer functions.
C         Systems & Control Letters, Vol. 5, pp. 229-236, 1985.
C
C     [2] Glover, K.
C         All optimal Hankel norm approximation of linear
C         multivariable systems and their L-infinity error bounds.
C         Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
C
C     [3] Tombs M.S. and Postlethwaite I.
C         Truncated balanced realization of stable, non-minimal
C         state-space systems.
C         Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C     [4] Varga A.
C         Explicit formulas for an efficient implementation
C         of the frequency-weighting model reduction approach.
C         Proc. 1993 European Control Conference, Groningen, NL,
C         pp. 693-696, 1993.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on an accuracy enhancing square-root
C     technique.
C                                         3
C     The algorithms require less than 30N  floating point operations.
C
C     CONTRIBUTORS
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, April 2000.
C     D. Sima, University of Bucharest, May 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C     Based on the RASP routines SFRLW, SFRLW1, SFRRW and SFRRW1,
C     by A. Varga, 1992.
C
C     REVISIONS
C
C     A. Varga, Australian National University, Canberra, November 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000.
C              Oct. 2001, March 2005.
C
C     KEYWORDS
C
C     Frequency weighting, model reduction, multivariable system,
C     state-space model, state-space representation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  C100, ONE, ZERO
      PARAMETER         ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, JOB, ORDSEL, WEIGHT
      INTEGER           INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
     $                  LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, N,
     $                  NR, NS, NV, NW, P
      DOUBLE PRECISION  ALPHA, TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), AV(LDAV,*), AW(LDAW,*),
     $                  B(LDB,*), BV(LDBV,*), BW(LDBW,*),
     $                  C(LDC,*), CV(LDCV,*), CW(LDCW,*),
     $                  D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
     $                  HSV(*)
C     .. Local Scalars ..
      LOGICAL           CONJS, DISCR, FIXORD, FRWGHT, LEFTW, RIGHTW
      INTEGER           IA, IB, IERR, IWARNL, KI, KL, KU, KW, LW, NMIN,
     $                  NRA, NU, NU1
      DOUBLE PRECISION  ALPWRK, MAXRED, RCOND, WRKOPT
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB07ND, AB09CX, AB09KX, TB01ID, TB01KD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      INFO   = 0
      IWARN  = 0
      CONJS  = LSAME( JOB,    'C' )
      DISCR  = LSAME( DICO,   'D' )
      FIXORD = LSAME( ORDSEL, 'F' )
      LEFTW  = LSAME( WEIGHT, 'L' ) .OR. LSAME( WEIGHT, 'B' )
      RIGHTW = LSAME( WEIGHT, 'R' ) .OR. LSAME( WEIGHT, 'B' )
      FRWGHT = LEFTW .OR. RIGHTW
C
      IF ( DISCR .AND. CONJS ) THEN
         IA = 2*NV
         IB = 2*NW
      ELSE
         IA = 0
         IB = 0
      END IF
      LW = 1
      IF( LEFTW )
     $   LW = MAX( LW, NV*(NV+5), NV*N + MAX( IA, P*N, P*M ) )
      IF( RIGHTW )
     $   LW = MAX( LW, MAX( NW*(NW+5), NW*N + MAX( IB, M*N, P*M ) ) )
      LW = MAX( LW, N*( 2*N + MAX( N, M, P ) + 5 ) + ( N*( N + 1 ) )/2 )
      LW = MAX( LW, N*( M + P + 2 ) + 2*M*P + MIN( N, M ) +
     $                             MAX ( 3*M + 1, MIN( N, M ) + P ) )
C
C     Check the input scalar arguments.
C
      IF( .NOT. ( LSAME( JOB, 'N' ) .OR. CONJS ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
     $                 LSAME( EQUIL, 'N' ) ) ) THEN
         INFO = -4
      ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( NV.LT.0 ) THEN
         INFO = -7
      ELSE IF( NW.LT.0 ) THEN
         INFO = -8
      ELSE IF( M.LT.0 ) THEN
         INFO = -9
      ELSE IF( P.LT.0 ) THEN
         INFO = -10
      ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
         INFO = -11
      ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
     $    ( .NOT.DISCR .AND.   ALPHA.GT.ZERO ) ) THEN
         INFO = -12
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -16
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -18
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -20
      ELSE IF( LDAV.LT.1 .OR. ( LEFTW  .AND. LDAV.LT.NV ) ) THEN
         INFO = -22
      ELSE IF( LDBV.LT.1 .OR. ( LEFTW  .AND. LDBV.LT.NV ) ) THEN
         INFO = -24
      ELSE IF( LDCV.LT.1 .OR. ( LEFTW  .AND. LDCV.LT.P  ) ) THEN
         INFO = -26
      ELSE IF( LDDV.LT.1 .OR. ( LEFTW  .AND. LDDV.LT.P  ) ) THEN
         INFO = -28
      ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
         INFO = -30
      ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
         INFO = -32
      ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M  ) ) THEN
         INFO = -34
      ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M  ) ) THEN
         INFO = -36
      ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
         INFO = -40
      ELSE IF( LDWORK.LT.LW ) THEN
         INFO = -43
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09KD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 ) THEN
         NR = 0
         NS = 0
         IWORK(1) = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF( LSAME( EQUIL, 'S' ) ) THEN
C
C        Scale simultaneously the matrices A, B and C:
C        A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C        diagonal matrix.
C        Workspace: N.
C
         MAXRED = C100
         CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                DWORK, INFO )
      END IF
C
C     Correct the value of ALPHA to ensure stability.
C
      ALPWRK = ALPHA
      IF( DISCR ) THEN
         IF( ALPHA.EQ.ONE ) ALPWRK = ONE - SQRT( DLAMCH( 'E' ) )
      ELSE
         IF( ALPHA.EQ.ZERO ) ALPWRK = -SQRT( DLAMCH( 'E' ) )
      END IF
C
C     Allocate working storage.
C
      KU = 1
      KL = KU + N*N
      KI = KL + N
      KW = KI + N
C
C     Reduce A to a block-diagonal real Schur form, with the
C     ALPHA-unstable part in the leading diagonal position, using a
C     non-orthogonal similarity transformation, A <- inv(T)*A*T, and
C     apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C     Workspace needed:      N*(N+2);
C     Additional workspace:  need   3*N;
C                            prefer larger.
C
      CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPWRK, A, LDA,
     $             B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KL),
     $             DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
C
      IF( IERR.NE.0 ) THEN
         IF( IERR.NE.3 ) THEN
            INFO = 1
         ELSE
            INFO = 2
         END IF
         RETURN
      END IF
C
      WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C     Compute the stable projection of the weighted ALPHA-stable part.
C
C     Workspace: need   MAX( 1, LDW1, LDW2 ),
C                LDW1 = 0 if WEIGHT = 'R' or 'N' and
C                LDW1 = MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C                       if WEIGHT = 'L' or 'B',
C                LDW2 = 0 if WEIGHT = 'L' or 'N' and
C                LDW2 = MAX( NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C                       if WEIGHT = 'R' or 'B',
C                where  a = 0,    b = 0,    if DICO = 'C' or  JOB = 'N',
C                       a = 2*NV, b = 2*NW, if DICO = 'D' and JOB = 'C';
C                prefer larger.
C
      NS = N - NU
C
C     Finish if only unstable part is present.
C
      IF( NS.EQ.0 ) THEN
         NR = NU
         IWORK(1) = 0
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
      NU1 = NU + 1
      IF( FRWGHT ) THEN
         CALL AB09KX( JOB, DICO, WEIGHT, NS, NV, NW, M, P, A(NU1,NU1),
     $                LDA, B(NU1,1), LDB, C(1,NU1), LDC, D, LDD,
     $                AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
     $                AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
     $                DWORK, LDWORK, IWARNL, IERR )
C
         IF( IERR.NE.0 ) THEN
C
C           Note: Only IERR = 1 or IERR = 2 are possible.
C           Set INFO to 3 or 4.
C
            INFO = IERR + 2
            RETURN
         END IF
C
         IF( IWARNL.NE.0 ) THEN
C
C           Stability/antistability of V and W are compulsory.
C
            IF( IWARNL.EQ.1 .OR. IWARNL.EQ.3 ) THEN
               INFO = 5
            ELSE
               INFO = 6
            END IF
            RETURN
         END IF
C
         DWORK(1) = MAX( WRKOPT, DWORK(1) )
      END IF
C
C     Determine a reduced order approximation of the ALPHA-stable part.
C
C     Workspace: need   MAX( LDW3, LDW4 ),
C                LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C                LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C                       MAX( 3*M+1, MIN(N,M)+P );
C                prefer larger.
C
      IWARNL = 0
      IF( FIXORD ) THEN
         NRA = MAX( 0, NR - NU )
         IF( NRA.EQ.0 )
     $      IWARNL = 2
      ELSE
         NRA = 0
      END IF
      CALL AB09CX( DICO, ORDSEL, NS, M, P, NRA, A(NU1,NU1), LDA,
     $             B(NU1,1), LDB, C(1,NU1), LDC, D, LDD, HSV, TOL1,
     $             TOL2, IWORK, DWORK, LDWORK, IWARN, IERR )
C
      IWARN = MAX( IWARN, IWARNL )
      IF( IERR.NE.0 ) THEN
C
C        Set INFO = 7, 8 or 9.
C
         INFO = IERR + 5
         RETURN
      END IF
C
      WRKOPT = MAX( WRKOPT, DWORK(1) )
      NMIN = IWORK(1)
C
C     Compute the state space realizations of the inverses of V and W.
C
C     Integer workspace: need   c,
C     Real workspace:    need   MAX(1,2*c),
C                        where  c = 0,             if WEIGHT = 'N',
C                               c = 2*P,           if WEIGHT = 'L',
C                               c = 2*M,           if WEIGHT = 'R',
C                               c = MAX(2*M,2*P),  if WEIGHT = 'B'.
C
      IF( LEFTW ) THEN
         CALL AB07ND( NV, P, AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
     $                RCOND, IWORK, DWORK, LDWORK, IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 10
            RETURN
         END IF
      END IF
      IF( RIGHTW ) THEN
         CALL AB07ND( NW, M, AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
     $                RCOND, IWORK, DWORK, LDWORK, IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 11
            RETURN
         END IF
      END IF
C
      WRKOPT = MAX( WRKOPT, DWORK(1) )
C
C     Compute the stable projection of weighted reduced ALPHA-stable
C     part.
C
      IF( FRWGHT ) THEN
         CALL AB09KX( JOB, DICO, WEIGHT, NRA, NV, NW, M, P, A(NU1,NU1),
     $                LDA, B(NU1,1), LDB, C(1,NU1), LDC, D, LDD,
     $                AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
     $                AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
     $                DWORK, LDWORK, IWARNL, IERR )
C
         IF( IERR.NE.0 ) THEN
            IF( IERR.LE.2 ) THEN
C
C              Set INFO to 3 or 4.
C
               INFO = IERR + 2
            ELSE
C
C              Set INFO to 12 or 13.
C
               INFO = IERR + 9
            END IF
            RETURN
         END IF
      END IF
C
      NR = NRA + NU
      IWORK(1) = NMIN
      DWORK(1) = MAX( WRKOPT, DWORK(1) )
C
      RETURN
C *** Last line of AB09KD ***
      END