control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
      SUBROUTINE MB04RD( JOBX, JOBY, SORT, N, PMAX, A, LDA, B, LDB, X,
     $                   LDX, Y, LDY, NBLCKS, BLSIZE, ALPHAR, ALPHAI,
     $                   BETA, TOL, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To reduce a real matrix pair (A,B) in generalized real Schur form
C     to a block-diagonal form using well-conditioned non-orthogonal
C     equivalence transformations. The condition numbers of the left and
C     right transformations used for the reduction are roughly bounded
C     by PMAX, where PMAX is a given value. The transformations are
C     optionally postmultiplied in the given matrices X and Y. The
C     generalized Schur form is optionally ordered, so that clustered
C     eigenvalues are grouped in the same pair of blocks.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBX    CHARACTER*1
C             Specifies whether or not the left transformations are
C             accumulated, as follows:
C             = 'N':  The left transformations are not accumulated;
C             = 'U':  The left transformations are accumulated in X
C                     (the given matrix X is updated).
C
C     JOBY    CHARACTER*1
C             Specifies whether or not the right transformations are
C             accumulated, as follows:
C             = 'N':  The right transformations are not accumulated;
C             = 'U':  The right transformations are accumulated in Y
C                     (the given matrix Y is updated).
C
C     SORT    CHARACTER*1
C             Specifies whether or not the diagonal blocks of the
C             generalized real Schur form are reordered, as follows:
C             = 'N':  The diagonal blocks are not reordered;
C             = 'S':  The diagonal blocks are reordered before each
C                     step of reduction, so that clustered eigenvalues
C                     appear in the same pair of blocks.
C             = 'C':  The diagonal blocks are not reordered, but the
C                     "closest-neighbour" strategy is used instead of
C                     the standard "closest to the mean" strategy (see
C                     METHOD);
C             = 'B':  The diagonal blocks are reordered before each
C                     step of reduction, and the "closest-neighbour"
C                     strategy is used (see METHOD).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, B, X and Y.  N >= 0.
C
C     PMAX    (input) DOUBLE PRECISION
C             An upper bound for the absolute value of the elements of
C             the individual transformations used for reduction
C             (see METHOD and FURTHER COMMENTS).  PMAX >= 1.0D0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N upper quasi-triangular part
C             of this array must contain the upper quasi-triangular
C             matrix A in the generalized real Schur form, as returned
C             by the LAPACK Library routine DGGES. The lower triangular
C             part below the Schur matrix is used as workspace.
C             On exit, the leading N-by-N upper quasi-triangular part of
C             this array contains the computed block-diagonal matrix, in
C             real Schur canonical form, corresponding to the given
C             matrix A. The remaining part is set to zero.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the upper triangular matrix B in the
C             generalized real Schur form, as returned by the LAPACK
C             Library routine DGGES. The diagonal elements of B are
C             non-negative. The strictly lower triangular part is used
C             as workspace. The matrix B is assumed nonzero.
C             On exit, the leading N-by-N upper triangular part of this
C             array contains the computed upper triangular block-
C             diagonal matrix, corresponding to the given matrix B. The
C             remaining part is set to zero. The diagonal elements of B
C             are non-negative.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (LDX,*)
C             On entry, if JOBX = 'U', the leading N-by-N part of this
C             array must contain a given matrix X, for instance the left
C             transformation matrix VSL returned by the LAPACK Library
C             routine DGGES.
C             On exit, if JOBX = 'U', the leading N-by-N part of this
C             array contains the product of the given matrix X and the
C             left transformation matrix that reduced (A,B) to block-
C             diagonal form. The local transformation matrix is itself a
C             product of non-orthogonal equivalence transformations
C             having elements with magnitude less than or equal to PMAX.
C             If JOBX = 'N', this array is not referenced.
C
C     LDX     INTEGER
C             The leading dimension of the array X.
C             LDX >= 1,        if JOBX = 'N';
C             LDX >= MAX(1,N), if JOBX = 'U'.
C
C     Y       (input/output) DOUBLE PRECISION array, dimension (LDY,*)
C             On entry, if JOBY = 'U', the leading N-by-N part of this
C             array must contain a given matrix Y, for instance the
C             right transformation matrix VSR returned by the LAPACK
C             Library routine DGGES.
C             On exit, if JOBY = 'U', the leading N-by-N part of this
C             array contains the product of the given matrix Y and the
C             right transformation matrix that reduced (A,B) to block-
C             diagonal form. The local transformation matrix is itself a
C             product of non-orthogonal equivalence transformations
C             having elements with magnitude less than or equal to PMAX.
C             If JOBY = 'N', this array is not referenced.
C
C     LDY     INTEGER
C             The leading dimension of the array Y.
C             LDY >= 1,        if JOBY = 'N';
C             LDY >= MAX(1,N), if JOBY = 'U'.
C
C     NBLCKS  (output) INTEGER
C             The number of diagonal blocks of the matrices A and B.
C
C     BLSIZE  (output) INTEGER array, dimension (N)
C             The first NBLCKS elements of this array contain the orders
C             of the resulting diagonal blocks of the matrices A and B.
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, if INFO = 0, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
C             j = 1, ..., N, will be the generalized eigenvalues.
C             ALPHAR(j) + ALPHAI(j)*i, and BETA(j), j = 1, ..., N, are
C             the diagonals of the complex Schur form (S,T) that would
C             result if the 2-by-2 diagonal blocks of the real Schur
C             form of (A,B) were further reduced to triangular form
C             using 2-by-2 complex unitary transformations.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
C             positive, then the j-th and (j+1)-st eigenvalues are a
C             complex conjugate pair, with ALPHAI(j+1) negative.
C             All BETA(j) are non-negative real numbers.
C             The quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may
C             easily over- or underflow, and BETA(j) may even be zero.
C             Thus, the user should avoid naively computing the ratio.
C             If A and B are obtained from general matrices using DGGES,
C             ALPHA will be always less than and usually comparable with
C             norm(A) in magnitude, and BETA always less than and
C             usually comparable with norm(B).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             If SORT = 'S' or 'B', the tolerance to be used in the
C             ordering of the diagonal blocks of the upper triangular
C             matrix pair.
C             If the user sets TOL > 0, then the given value of TOL is
C             used as an absolute tolerance: a pair of blocks i and a
C             temporarily fixed pair of blocks 1 (the first pair of
C             blocks of the current trailing pair of submatrices to be
C             reduced) are considered to belong to the same cluster if
C             their eigenvalues satisfy the following "distance"
C             condition
C
C               | lambda_1 - lambda_i | <= TOL.
C
C             If the user sets TOL < 0, then the given value of TOL is
C             used as a relative tolerance: a pair of blocks i and a
C             temporarily fixed pair of blocks 1 are considered to
C             belong to the same cluster if their eigenvalues satisfy,
C             for finite lambda_j, j = 1, ..., N,
C
C               | lambda_1 - lambda_i | <= | TOL | * max | lambda_j |.
C
C             If the user sets TOL = 0, then an implicitly computed,
C             default tolerance, defined by TOL = SQRT( SQRT( EPS ) )
C             is used instead, as a relative tolerance, where EPS is
C             the machine precision (see LAPACK Library routine DLAMCH).
C             The approximate symmetric chordal metric is used as
C             "distance" of two complex, possibly infinite numbers, x
C             and y. This metric is given by the formula
C
C               d(x,y) = min( |x-y|, |1/x-1/y| ),
C
C             taking into account the special cases of infinite or NaN
C             values.
C             If SORT = 'N' or 'C', this parameter is not referenced.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N+6)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK.
C             On exit, if INFO = -22, DWORK(1) returns the minimum
C             value of LDWORK. When LDWORK = 0 is set on entry, the
C             routine will return this value for INFO, and also set
C             DWORK(1), but no error message related to LDWORK is
C             issued by XERBLA.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 1,         if N <= 1;
C             LDWORK >= 4*N + 16,  if N >  1.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the matrix pencil defined by A and B is singular.
C
C     METHOD
C
C     Consider first that SORT = 'N'. Let
C
C            ( A    A   )       ( B    B   )
C            (  11   12 )       (  11   12 )
C        A = (          ),  B = (          ),
C            ( 0    A   )       ( 0    B   )
C            (       22 )       (       22 )
C
C     be the given matrix pair in generalized real Schur form, where
C     initially A   and B   are the first pair of diagonal blocks of
C                11      11
C     dimension 1-by-1 or 2-by-2. An attempt is made to compute the
C     transformation matrices X and Y of the form
C
C            ( I   V )       ( I   W )
C        X = (       ),  Y = (       )                               (1)
C            ( 0   I )       ( 0   I )
C
C     (partitioned as A and B ), so that (' denotes the transpose)
C
C                 ( A     0  )            ( B     0  )
C                 (  11      )            (  11      )
C        X' A Y = (          ),  X' B Y = (          ),
C                 ( 0    A   )            ( 0    B   )
C                 (       22 )            (       22 )
C
C     and the elements of V and W do not exceed the value PMAX in
C     magnitude. An adaptation of the standard method for solving
C     generalized Sylvester equations [1], which controls the magnitude
C     of the individual elements of the computed solution [2], is used
C     to obtain V and W. When this attempt fails, a 1-by-1 (or 2-by-2)
C     pair of diagonal blocks of (A  , B  ), whose eigenvalue(s) is
C                                  22   22
C     (are) the closest to the mean of those of (A  , B  ) is selected,
C                                                 11   11
C     and moved by orthogonal equivalence transformations in the leading
C     position of (A  , B  ); the moved diagonal blocks in A and B are
C                   22   22
C     then added to the blocks A   and B  , respectively, increasing
C                               11      11
C     their order by 1 (or 2). Another attempt is made to compute
C     suitable transformation matrices X and Y with the new definitions
C     of the blocks A  , A  , B  , and B  . After successful
C                    11   22   11       22
C     transformation matrices X and Y have been obtained, they
C     postmultiply the current transformation matrices (if JOBX = 'U'
C     and/or JOBY = 'U') and the whole procedure is repeated for the new
C     blocks A   and B  .
C             22      22
C
C     When SORT = 'S', the diagonal blocks of the generalized real Schur
C     form are reordered before each step of the reduction, so that each
C     cluster of generalized eigenvalues, defined as specified in the
C     definition of TOL, appears in adjacent blocks. The blocks for
C     each cluster are merged together, and the procedure described
C     above is applied to the larger blocks. Using the option SORT = 'S'
C     will usually provide better efficiency than the standard option
C     (SORT = 'N'), proposed in [2], because there could be no or few
C     unsuccessful attempts to compute individual transformation
C     matrices X and Y of the form (1). However, the resulting
C     dimensions of the blocks are usually larger; this could make
C     subsequent calculations less efficient.
C
C     When SORT = 'C' or 'B', the procedure is similar to that for
C     SORT = 'N' or 'S', respectively, but the blocks of A   and B
C                                                         22      22
C     whose eigenvalue(s) is (are) the closest to those of (A  , B  )
C                                                            11   11
C     (not to their mean) are selected and moved to the leading position
C     of A   and B  . This is called the "closest-neighbour" strategy.
C         22      22
C
C     REFERENCES
C
C     [1] Kagstrom, B. and Westin, L.
C         Generalized Schur Methods with Condition Estimators for
C         Solving the Generalized Sylvester Equation.
C         IEEE Trans. Auto. Contr., 34, pp. 745-751, 1989.
C
C     [2] Bavely, C. and Stewart, G.W.
C         An Algorithm for Computing Reducing Subspaces by Block
C         Diagonalization.
C         SIAM J. Numer. Anal., 16, pp. 359-367, 1979.
C
C     [3] Demmel, J.
C         The Condition Number of Equivalence Transformations that
C         Block Diagonalize Matrix Pencils.
C         SIAM J. Numer. Anal., 20, pp. 599-610, 1983.
C
C     NUMERICAL ASPECTS
C                                       3                     4
C     The algorithm usually requires 0(N ) operations, but 0(N ) are
C     possible in the worst case, when the matrix pencil cannot be
C     diagonalized by well-conditioned transformations.
C
C     FURTHER COMMENTS
C
C     The individual non-orthogonal transformation matrices used in the
C     reduction of A and B to a block-diagonal form have condition
C     numbers of the order PMAX. This does not guarantee that their
C     product is well-conditioned enough. The routine can be easily
C     modified to provide estimates for the condition numbers of the
C     clusters of generalized eigenvalues.
C
C     CONTRIBUTOR
C
C     V. Sima, Nov. 2022.
C
C     REVISIONS
C
C     V. Sima, Dec. 2022, Feb. 2023, Mar. 2023, Apr. 2023, Jan. 24.
C
C     KEYWORDS
C
C     Diagonalization, orthogonal transformation, Schur form, Sylvester
C     equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TEN
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 1.0D1 )
C     .. Scalar Arguments ..
      CHARACTER         JOBX, JOBY, SORT
      INTEGER           INFO, LDA, LDB, LDWORK, LDX, LDY, N, NBLCKS
      DOUBLE PRECISION  PMAX, TOL
C     .. Array Arguments ..
      INTEGER           BLSIZE(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                  BETA(*), DWORK(*), X(LDX,*), Y(LDY,*)
C     .. Local Scalars ..
      LOGICAL           GOON, LQUERY, LSORN, LSORS, LSORT, PINF, WANTX,
     $                  WANTY
      INTEGER           DA11, DA22, I, IERR, K, KF, L, L11, L22, L22M1,
     $                  MAXWRK, MINWRK
      DOUBLE PRECISION  ABSA, AVI, AVR, BIGNUM, BIR, BKR, BLR, C, D,
     $                  DAV, DC, EII, EIR, EKI, EKR, ELI, ELR, EPS,
     $                  MXEV, NRMB, SAFEMN, SC, SCALE, THRESH, TOLB
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(1)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANHS, DLANTR, DLAPY2, DNRM2
      EXTERNAL          DLAMCH, DLANHS, DLANTR, DLAPY2, DNRM2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DLASET, DSCAL, DTGEXC, MA01DZ, MA02AD,
     $                  MB03QV, MB04RT, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, SIGN, SQRT
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      WANTX  = LSAME( JOBX, 'U' )
      WANTY  = LSAME( JOBY, 'U' )
      LSORN  = LSAME( SORT, 'N' )
      LSORS  = LSAME( SORT, 'S' )
      LSORT  = LSAME( SORT, 'B' ) .OR. LSORS
      LQUERY = LDWORK.EQ.-1
C
      IF( N.LE.1 ) THEN
         MINWRK = 1
      ELSE
         MINWRK = 4*N + 16
      END IF
C
      IF(      .NOT.WANTX .AND. .NOT.LSAME( JOBX, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.WANTY .AND. .NOT.LSAME( JOBY, 'N' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.LSORN .AND. .NOT.LSORT .AND.
     $         .NOT.LSAME( SORT, 'C' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( PMAX.LT.ONE ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDX.LT.1 .OR. ( WANTX .AND. LDX.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDY.LT.1 .OR. ( WANTY .AND. LDY.LT.N ) ) THEN
         INFO = -13
      ELSE
         IF( LQUERY ) THEN
            CALL DTGEXC( WANTX, WANTY, N, A, LDA, B, LDB, X, LDX, Y,
     $                   LDY, 1, N, DWORK, -1, IERR )
            MAXWRK = DWORK(1)
            RETURN
         ELSE
            IF( LDWORK.LT.MINWRK ) THEN
               INFO = -22
               DWORK(1) = MINWRK
               IF( LDWORK.EQ.0 )
     $            RETURN
            ELSE
               MAXWRK = MINWRK
            END IF
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB04RD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      NBLCKS = 0
      IF( N.EQ.0 ) THEN
         DWORK(1)  = ONE
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         NBLCKS    = 1
         BLSIZE(1) = 1
         ALPHAR(1) = A(1,1)
         ALPHAI(1) = ZERO
         BETA(1)   = B(1,1)
         DWORK(1)  = ONE
         RETURN
      END IF
C
C     Set the "safe" minimum positive number with representable
C     reciprocal.
C
      EPS    = DLAMCH( 'Precision' )
      SAFEMN = DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SAFEMN
C
C     Set the scaling factor as an approximation of the expected
C     magnitude of eigenvalues. The matrix B is assumed nonzero.
C     Set also a tolerance for taking an eigenvalue as infinite after
C     it was perturbed into a finite one.
C
      NRMB  = DLANTR( 'Froben', 'Upper', 'NoDiag', N, N, B, LDB, DUM )
      SCALE = DLANHS( 'Froben', N, A, LDA, DUM ) / NRMB
      TOLB  = TEN*EPS*NRMB
C
C     Set the scaled eigenvalues of (A,B) and the tolerance for
C     reordering the eigenvalues in clusters, if needed.
C     The LAPACK routine DLAG2, called by MB03QV, assumes that the
C     2-by-2 pairs A(ii:ii+1,ii:ii+1) and B(ii:ii+1,ii:ii+1) have their
C     1-norms less than 1/SAFEMN, and the diagonal entries of B are at
C     least sqrt(SAFEMN).
C
      CALL MB03QV( N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, IERR )
      CALL DSCAL(  N, SCALE, BETA, 1 )
C
      IF( LSORT ) THEN
         THRESH = ABS( TOL )
         IF( THRESH.EQ.ZERO ) THEN
C
C           Use the default tolerance in ordering the eigenvalues.
C
            THRESH = SQRT( SQRT( EPS ) )
         END IF
C
         IF( TOL.LE.ZERO ) THEN
            MXEV = ZERO
C
C           Use a relative tolerance.
C           Find max | lambda_j |, for finite lambda_j, j = 1 : N.
C
            DO 10 I = 1, N
               ABSA = DLAPY2( ALPHAR(I), ALPHAI(I) )
               BLR  = BETA(I)
               IF( BLR.GE.ONE ) THEN
                  MXEV = MAX( MXEV, ABSA / BLR )
               ELSE IF( ABSA.LT.BIGNUM*BLR ) THEN
                  MXEV = MAX( MXEV, ABSA / BLR )
               END IF
   10       CONTINUE
C
            IF( THRESH.LE.ONE ) THEN
               IF( MXEV.GE.ONE ) THEN
                  THRESH = THRESH*MXEV
               ELSE
                  THRESH = MAX( THRESH*MXEV, EPS )
               END IF
            ELSE IF( MXEV.LT.BIGNUM / THRESH ) THEN
               THRESH = THRESH*MXEV
            ELSE
               THRESH = BIGNUM
            END IF
         ELSE
            THRESH = THRESH / SCALE
         END IF
      END IF
C
C     Define the following submatrices of A:
C     A11, the DA11-by-DA11 block in position (L11,L11);
C     A22, the DA22-by-DA22 block in position (L22,L22);
C     A12, the DA11-by-DA22 block in position (L11,L22);
C     A21, the DA22-by-DA11 block in position (L22,L11) (null initially
C                                                        and finally).
C     Define similarly the submatrices of B, B11, B22, B12, B21.
C     The following loop uses L11 as loop variable and try to separate a
C     pair in position (L11,L11) of (A,B), with possibly clustered
C     eigenvalues, separated by the other eigenvalues (in the pair
C     (A22,B22)).
C
      L11 = 1
C
C     WHILE ( L11.LE.N ) DO
C
   20 CONTINUE
C
      IF( L11.LE.N ) THEN
         NBLCKS = NBLCKS + 1
         IF( ALPHAI(L11).GT.ZERO ) THEN
            DA11 = 2
         ELSE
            DA11 = 1
         END IF
         L22 = L11 + DA11
C
         IF( LSORT .AND. L11.LT.N ) THEN
C
            ELR = ALPHAR(L11)
            ELI = ALPHAI(L11)
            BLR =   BETA(L11)
C
C           The following loop, using K as loop variable, finds the
C           diagonal blocks whose eigenvalues are close to those of
C           (A11,B11) and moves these blocks (if any) to the leading
C           position of (A22,B22).
C
            K  = L22
            KF = L22
            IF( ALPHAI(K).GT.ZERO )
     $         KF = KF + 1
C
C           WHILE ( K.LE.N ) DO
   30       CONTINUE
C
            PINF = .FALSE.
            IF( K.LE.N ) THEN
               EKR = ALPHAR(K)
               EKI = ALPHAI(K)
               BKR =   BETA(K)
               IF( BKR.EQ.ZERO ) THEN
C
C                 Positive infinite eigenvalue.
C
                  PINF = A(K,K).GT.ZERO
               END IF
C
               CALL MA01DZ( ELR, ELI, BLR, EKR, EKI, BKR, EPS, SAFEMN,
     $                      C, DC, INFO )
               IF( INFO.EQ.1 ) THEN
C
C                 Error return: singular pencil.
C
                  RETURN
               END IF
C
               IF( DC.NE.ZERO .AND. C.LE.THRESH ) THEN
C
C                 A 1x1 or a 2x2 pair of blocks of (A22,B22) has been
C                 found so that
C
C                    abs( lambda_1 - lambda_k ) <= THRESH,
C
C                 where lambda_1 denotes an eigenvalue of (A11,B11).
C                 Move that pair of blocks to the leading position
C                 of (A22,B22).
C
C                 Workspace: need    4*N + 16, if N > 1; 1, otherwise;
C                            prefer  larger.
C
                  IF( K.GT.L22 ) THEN
                     CALL DTGEXC( WANTX, WANTY, N, A, LDA, B, LDB, X,
     $                            LDX, Y, LDY, K, L22, DWORK, LDWORK,
     $                            IERR )
C
                     IF( K.LT.N ) THEN
                        IF( A(K+1,K).NE.ZERO )
     $                     KF = K + 1
                     END IF
C
C                    Make B(I,I) >= 0, I = L22, ..., KF.
C                    Also, set the correct sign of an infinite
C                    eigenvalue.
C
                     IF( BKR.EQ.ZERO .AND. ABS( B(L22,L22) ).LT.TOLB )
     $                     THEN
                        B(L22,L22) = ZERO
                        IF( PINF .AND. A(L22,L22).LT.ZERO ) THEN
                           CALL DSCAL( L22-1, -ONE, B(1,L22), 1 )
                           CALL DSCAL(   L22, -ONE, A(1,L22), 1 )
                           IF( WANTY )
     $                        CALL DSCAL( N, -ONE, Y(1,L22), 1 )
                        END IF
                     END IF
C
                     DO 40 I = L22, KF
                        IF( B(I,I).LT.ZERO ) THEN
                           CALL DSCAL( I, -ONE, B(1,I), 1 )
                           CALL DSCAL( I, -ONE, A(1,I), 1 )
                           IF( I.LT.N ) THEN
                              IF( A(I+1,I).NE.ZERO )
     $                           A(I+1,I) = -A(I+1,I)
                           END IF
                           IF( WANTY )
     $                        CALL DSCAL( N, -ONE, Y(1,I), 1 )
                        END IF
   40                CONTINUE
C
                     CALL MB03QV( KF-L22+1, A(L22,L22), LDA, B(L22,L22),
     $                            LDB, ALPHAR(L22), ALPHAI(L22),
     $                            BETA(L22), IERR )
C
                     CALL DSCAL( KF-L22+1, SCALE, BETA(L22), 1 )
                  END IF
C
C                 Extend (A11,B11) with the leading 1-by-1 or 2-by-2
C                 pair of blocks of (A22,B22).
C
                  IF( ALPHAI(L22).GT.ZERO ) THEN
                     DA11 = DA11 + 2
                  ELSE
                     DA11 = DA11 + 1
                  END IF
                  L22 = L11 + DA11
               END IF
               IF( ALPHAI(K).GT.ZERO ) THEN
                  K = K + 2
               ELSE
                  K = K + 1
               END IF
               KF = K
               GO TO 30
            END IF
C           END WHILE 30
C
         END IF
C
C        The following loop uses L22 as loop variable and forms a
C        separable DA11-by-DA11 pair (A11,B11) in position (L11,L11).
C
C        WHILE ( L22.LE.N ) DO
C
   50    CONTINUE
C
         IF( L22.LE.N ) THEN
            L22M1 = L22 - 1
            DA22  = N - L22M1
C
C           Try to separate the pair (A11,B11) of order DA11 by using a
C           well-conditioned equivalence transformation.
C
C           First save A12' in the block A21, containing zeros only.
C           Similarly, save B12' in the block B21.
C
            CALL MA02AD( 'Full', DA11, DA22, A(L11,L22), LDA,
     $                   A(L22,L11), LDA )
            CALL MA02AD( 'Full', DA11, DA22, B(L11,L22), LDB,
     $                   B(L22,L11), LDB )
C
C           Solve the generalized Sylvester equation
C              A11*W - V*A22 = -sc*A12,
C              B11*W - V*B22 = -sc*B12.
C
C           Integer workspace:  need    N+6.
C
            CALL MB04RT( DA11, DA22, PMAX, A(L11,L11), LDA, A(L22,L22),
     $                   LDA, A(L11,L22), LDA, B(L11,L11), LDB,
     $                   B(L22,L22), LDB, B(L11,L22), LDB, SC, IWORK,
     $                   IERR )
C
            IF( IERR.GE.1 ) THEN
C
C              The annihilation of A12, B12 failed. Restore A12 and B12.
C
               CALL MA02AD( 'Full', DA22, DA11, A(L22,L11), LDA,
     $                      A(L11,L22), LDA )
               CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, A(L22,L11),
     $                      LDA )
               CALL MA02AD( 'Full', DA22, DA11, B(L22,L11), LDB,
     $                      B(L11,L22), LDB )
               CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, B(L22,L11),
     $                      LDB )
C
               GOON = ( L22.EQ.N .AND. DA11.EQ.1 ) .OR. L22.LT.N-1
               IF( ( LSORN .OR. LSORS ) .AND. GOON ) THEN
C
C                 Extend (A11,B11) with a 1-by-1 or 2-by-2 pair of
C                 blocks of (A22,B22) having the nearest eigenvalue to
C                 the mean of eigenvalues of (A11,B11), and resume the
C                 loop. First compute the mean.
C
                  AVR = ZERO
                  AVI = ZERO
C
                  DO 60 I = L11, L22M1
                     EIR = ALPHAR(I)
                     EII = ALPHAI(I)
                     BIR =   BETA(I)
                     IF( BIR.GE.ONE ) THEN
                        EIR = EIR / BIR
                        EII = EII / BIR
                        AVR = AVR + EIR
                        AVI = AVI + EII
                     ELSE IF( MAX( ABS( EIR ), ABS( EII ) ).LT.
     $                             BIGNUM*BIR ) THEN
                        EIR = EIR / BIR
                        EII = EII / BIR
                        AVR = AVR + EIR
                        AVI = AVI + EII
                     ELSE
                        AVR = SIGN( ONE, EIR )
                        AVI = ZERO
                        DAV = ZERO
                        GO TO 70
                     END IF
   60             CONTINUE
C
                  AVR = AVR / DA11
                  AVI = AVI / DA11
                  DAV = ONE
C
   70             CONTINUE
C
C                 Loop to find the eigenvalue(s) of (A22,B22) nearest to
C                 the above computed mean.
C
                  D = BIGNUM
                  K = L22
                  L = L22
C
C                 WHILE ( L.LE.N ) DO
   80             CONTINUE
C
                  PINF = .FALSE.
                  IF( L.LE.N ) THEN
                     ELR = ALPHAR(L)
                     ELI = ALPHAI(L)
                     BLR =   BETA(L)
                     IF( MAX( BLR, DAV ).EQ.ZERO ) THEN
                        D = ZERO
                        K = L
C
C                       Positive infinite eigenvalue.
C
                        PINF = A(L,L).GT.ZERO
                        GO TO 90
                     ELSE
                        CALL MA01DZ( ELR, ELI, BLR, AVR, AVI, DAV,
     $                               EPS, SAFEMN, C, DC, INFO )
                        IF( INFO.EQ.1 )
     $                     RETURN
                        IF( DC.NE.ZERO .AND. C.LT.D ) THEN
                           D = C
                           K = L
                        END IF
                        IF( ALPHAI(L).GT.ZERO ) THEN
                           L = L + 2
                        ELSE
                           L = L + 1
                        END IF
                     END IF
C
                     GO TO 80
                  END IF
C                 END WHILE 80
C
   90             CONTINUE
C
                  IF( ALPHAI(K).GT.ZERO ) THEN
                     KF = K + 1
                  ELSE
                     KF = K
                  END IF
C
               ELSE
C
C                 Extend (A11,B11) with a 1-by-1 or 2-by-2 pair of
C                 blocks of (A22,B22) having the nearest eigenvalues to
C                 the cluster of eigenvalues of (A11,B11), and resume
C                 the loop.
C
C                 Loop to find the eigenvalue(s) of (A22,B22) of minimum
C                 distance to the cluster of eigenvalues of (A11,B11).
C
                  D = BIGNUM
                  K = L22
                  L = L22
                  I = L22M1
C
                  EIR = ALPHAR(I)
                  EII = ALPHAI(I)
                  BIR =   BETA(I)
C
C                 WHILE ( L.LE.N ) DO
C
  100             CONTINUE
C
                  PINF = .FALSE.
                  IF( L.LE.N ) THEN
                     ELR = ALPHAR(L)
                     ELI = ALPHAI(L)
                     BLR =   BETA(L)
C
                     IF( MAX( BIR, BLR ).EQ.ZERO ) THEN
                        D = ZERO
                        K = L
C
C                       Positive infinite eigenvalue.
C
                        PINF = A(L,L).GT.ZERO
                        GO TO 110
                     ELSE
                        CALL MA01DZ( EIR, EII, BIR, ELR, ELI, BLR,
     $                               EPS, SAFEMN, C, DC, INFO )
                        IF( INFO.EQ.1 )
     $                     RETURN
                        IF( DC.NE.ZERO .AND. C.LT.D ) THEN
                           D = C
                           K = L
                        END IF
                        IF( ALPHAI(L).GT.ZERO ) THEN
                           L = L + 2
                        ELSE
                           L = L + 1
                        END IF
                     END IF
                     GO TO 100
                  END IF
C                 END WHILE 100
C
  110             CONTINUE
C
                  IF( ALPHAI(K).GT.ZERO ) THEN
                     KF = K + 1
                  ELSE
                     KF = K
                  END IF
C
               END IF
C
C              Try to move the 1-by-1 or 2-by-2 pair found to the
C              leading position of (A22,B22).
C
               IF( K.GT.L22 ) THEN
                  CALL DTGEXC( WANTX, WANTY, N, A, LDA, B, LDB, X, LDX,
     $                         Y, LDY, K, L22, DWORK, LDWORK, IERR )
C
                  IF( K.LT.N ) THEN
                     IF( A(K+1,K).NE.ZERO )
     $                  KF = K + 1
                  END IF
C
C                 Make B(I,I) >= 0, I = L22, ..., K.
C                 Also, set the correct sign of an infinite eigenvalue.
C
                  IF( BLR.EQ.ZERO .AND. ABS( B(L22,L22) ).LT.TOLB ) THEN
                     B(L22,L22) = ZERO
                     IF( PINF .AND. A(L22,L22).LT.ZERO ) THEN
                        CALL DSCAL( L22M1, -ONE, B(1,L22), 1 )
                        CALL DSCAL(   L22, -ONE, A(1,L22), 1 )
                        IF( WANTY )
     $                     CALL DSCAL( N, -ONE, Y(1,L22), 1 )
                     END IF
                  END IF
C
                  DO 120 I = L22, KF
                     IF( B(I,I).LT.ZERO ) THEN
                        CALL DSCAL( I, -ONE, B(1,I), 1 )
                        CALL DSCAL( I, -ONE, A(1,I), 1 )
                        IF( I.LT.N ) THEN
                           IF( A(I+1,I).NE.ZERO )
     $                        A(I+1,I) = -A(I+1,I)
                        END IF
                        IF( WANTY )
     $                     CALL DSCAL( N, -ONE, Y(1,I), 1 )
                     END IF
  120             CONTINUE
C
                  CALL MB03QV( KF-L22+1, A(L22,L22), LDA, B(L22,L22),
     $                         LDB, ALPHAR(L22), ALPHAI(L22), BETA(L22),
     $                         IERR )
C
                  CALL DSCAL( KF-L22+1, SCALE, BETA(L22), 1 )
C
               END IF
C
C              Extend (A11,B11) with the leading 1-by-1 block of
C              (A22,B22).
C
               IF( ALPHAI(L22).GT.ZERO ) THEN
                  DA11 = DA11 + 2
               ELSE
                  DA11 = DA11 + 1
               END IF
               L22 = L11 + DA11
               GO TO 50
            END IF
         END IF
C        END WHILE 50
C
         IF( L22.LE.N ) THEN
C
C           Accumulate the transformation in X and/or Y.
C           Only rows L11, ..., L22-1 in X, and columns L22, ..., N
C           in Y, are modified.
C           Also, scale to unity the (non-zero) columns of Y which will
C           be no more modified and transform A11 and B11 accordingly.
C           Scaling to unity the columns of X is done at the end.
C
            IF( WANTX ) THEN
               CALL DGEMM( 'NoTran', 'Trans', N, DA11, DA22, ONE,
     $                     X(1,L22), LDX, B(L11,L22), LDB, ONE,
     $                     X(1,L11), LDX )
            END IF
C
            IF( WANTY ) THEN
               CALL DGEMM( 'NoTran', 'NoTran', N, DA22, DA11, -ONE,
     $                     Y(1,L11), LDY, A(L11,L22), LDA, ONE,
     $                     Y(1,L22), LDY )
C
               DO 130 I = L11, L22M1
                  SC = DNRM2( N, Y(1,I), 1 )
                  IF( ABS( SC - ONE ).GT.EPS .AND. SC.GT.SAFEMN ) THEN
                     SC = ONE / SC
                     CALL DSCAL( DA11, SC, A(L11,I), 1 )
                     CALL DSCAL( DA11, SC, B(L11,I), 1 )
                     CALL DSCAL(    N, SC,   Y(1,I), 1 )
                  END IF
  130          CONTINUE
C
            END IF
C
C           Set A12, A21, B12 and B21 to zero.
C
            CALL DLASET( 'Full', DA11, DA22, ZERO, ZERO, A(L11,L22),
     $                   LDA )
            CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, A(L22,L11),
     $                   LDA )
            CALL DLASET( 'Full', DA11, DA22, ZERO, ZERO, B(L11,L22),
     $                   LDB )
            CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, B(L22,L11),
     $                   LDB )
         END IF
C
C        Store the orders of the diagonal blocks in BLSIZE.
C
         BLSIZE(NBLCKS) = DA11
         L11 = L22
         GO TO 20
C
      END IF
C
C     END WHILE 20
C
      IF( WANTX ) THEN
C
C        Scale to unity the (non-zero) columns of X and update A and B.
C
         L11 = 1
C
         DO 150 L = 1, NBLCKS
            DA11 = BLSIZE(L)
            L22  = L11 + DA11
C
            DO 140 I = L11, L22 - 1
               SC = DNRM2( N, X(1,I), 1 )
               IF( ABS( SC - ONE ).GT.EPS .AND. SC.GT.SAFEMN ) THEN
                  SC = ONE / SC
                  CALL DSCAL( DA11, SC, A(I,L11), LDA )
                  CALL DSCAL( DA11, SC, B(I,L11), LDB )
                  CALL DSCAL(    N, SC,   X(1,I),   1 )
               END IF
  140       CONTINUE
C
            L11 = L22
  150    CONTINUE
C
      END IF
C
      IF( WANTY ) THEN
C
C        Scale to unity the remaining (non-zero) columns of Y and update
C        A and B.
C
         L11 = N - DA11 + 1
C
         DO 160 I = L11, N
            SC = DNRM2( N, Y(1,I), 1 )
            IF( ABS( SC - ONE ).GT.EPS .AND. SC.GT.SAFEMN ) THEN
               SC = ONE / SC
               CALL DSCAL( DA11, SC, A(L11,I), 1 )
               CALL DSCAL( DA11, SC, B(L11,I), 1 )
               CALL DSCAL(    N, SC,   Y(1,I), 1 )
            END IF
  160    CONTINUE
C
      END IF
C
C     Undo scaling of eigenvalues.
C
      CALL DSCAL( N, ONE / SCALE, BETA, 1 )
C
      DWORK(1) = MAXWRK
C
      RETURN
C *** Last line of MB04RD ***
      END