control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
      SUBROUTINE SG03BW( TRANS, M, N, A, LDA, C, LDC, E, LDE, D, LDD, X,
     $                   LDX, SCALE, INFO )
C
C     PURPOSE
C
C     To solve for X the generalized Sylvester equation
C
C         T            T
C        A  * X * C + E  * X * D  =  SCALE * Y,                      (1)
C
C     or the transposed equation
C
C                 T            T
C        A * X * C  + E * X * D   =  SCALE * Y,                      (2)
C
C     where A and E are real M-by-M matrices, C and D are real N-by-N
C     matrices, X and Y are real M-by-N matrices. N is either 1 or 2.
C     The pencil A - lambda * E must be in generalized real Schur form
C     (A upper quasitriangular, E upper triangular). SCALE is an output
C     scale factor, set to avoid overflow in X.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANS   CHARACTER*1
C             Specifies whether the transposed equation is to be solved
C             or not:
C             = 'N':  Solve equation (1);
C             = 'T':  Solve equation (2).
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The order of the matrices A and E.  M >= 0.
C
C     N       (input) INTEGER
C             The order of the matrices C and D.  N = 1 or N = 2.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             The leading M-by-M part of this array must contain the
C             upper quasitriangular matrix A. The elements below the
C             upper Hessenberg part are not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,M).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading N-by-N part of this array must contain the
C             matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,N).
C
C     E       (input) DOUBLE PRECISION array, dimension (LDE,M)
C             The leading M-by-M part of this array must contain the
C             upper triangular matrix E. The elements below the main
C             diagonal are not referenced.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,M).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,N)
C             The leading N-by-N part of this array must contain the
C             matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,N).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C             On entry, the leading M-by-N part of this array must
C             contain the right hand side matrix Y.
C             On exit, the leading M-by-N part of this array contains
C             the solution matrix X.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= MAX(1,M).
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor set to avoid overflow in X.
C             0 < SCALE <= 1.
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the generalized Sylvester equation is (nearly)
C                   singular to working precision;  perturbed values
C                   were used to solve the equation (but the matrices
C                   A, C, D, and E are unchanged).
C
C     METHOD
C
C     The method used by the routine is based on a generalization of the
C     algorithm due to Bartels and Stewart [1]. See also [2] and [3] for
C     details.
C
C     REFERENCES
C
C     [1] Bartels, R.H., Stewart, G.W.
C         Solution of the equation A X + X B = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Gardiner, J.D., Laub, A.J., Amato, J.J., Moler, C.B.
C         Solution of the Sylvester Matrix Equation
C         A X B**T + C X D**T = E.
C         A.C.M. Trans. Math. Soft., vol. 18, no. 2, pp. 223-231, 1992.
C
C     [3] Penzl, T.
C         Numerical solution of generalized Lyapunov equations.
C         Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C     NUMERICAL ASPECTS
C
C     The routine requires about 2 * N * M**2 flops. Note that we count
C     a single floating point arithmetic operation as one flop.
C
C     The algorithm is backward stable if the eigenvalues of the pencil
C     A - lambda * E are real. Otherwise, linear systems of order at
C     most 4 are involved into the computation. These systems are solved
C     by Gauss elimination with complete pivoting. The loss of stability
C     of the Gauss elimination with complete pivoting is rarely
C     encountered in practice.
C
C     FURTHER COMMENTS
C
C     When near singularity is detected, perturbed values are used
C     to solve the equation (but the given matrices are unchanged).
C
C     CONTRIBUTOR
C
C     T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C     REVISIONS
C
C     Sep. 1998, Dec. 2021  (V. Sima).
C
C     KEYWORDS
C
C     Lyapunov equation
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  MONE, ONE, ZERO
      PARAMETER         ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER         TRANS
      DOUBLE PRECISION  SCALE
      INTEGER           INFO, LDA, LDC, LDD, LDE, LDX, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), C(LDC,*), D(LDD,*), E(LDE,*), X(LDX,*)
C     .. Local Scalars ..
      DOUBLE PRECISION  SCALE1
      INTEGER           DIMMAT, I, INFO1, J, MA, MAI, MAJ, MB, ME
      LOGICAL           NOTRNS
C     .. Local Arrays ..
      DOUBLE PRECISION  MAT(4,4), RHS(4), TM(2,2)
      INTEGER           PIV1(4), PIV2(4)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGESC2, DGETC2, DLASCL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C
C     Decode input parameters.
C
      NOTRNS = LSAME( TRANS, 'N' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'T' ) ) ) THEN
         INFO = -1
      ELSEIF ( M.LT.0 ) THEN
         INFO = -2
      ELSEIF ( N.NE.1 .AND. N.NE.2 ) THEN
         INFO = -3
      ELSEIF ( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSEIF ( LDC.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSEIF ( LDE.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSEIF ( LDD.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSEIF ( LDX.LT.MAX( 1, M ) ) THEN
         INFO = -13
      ELSE
         INFO = 0
      END IF
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'SG03BW', -INFO )
         RETURN
      END IF
C
      SCALE = ONE
C
C     Quick return if possible.
C
      IF ( M.EQ.0 )
     $    RETURN
C
      IF ( NOTRNS ) THEN
C
C        Solve equation (1).
C
C        Compute block row X(MA:ME,:). MB denotes the number of rows in
C        this block row.
C
         ME = 0
C        WHILE ( ME.NE.M ) DO
   20    CONTINUE
         IF ( ME.NE.M ) THEN
            MA = ME + 1
            IF ( MA.EQ.M ) THEN
               ME = M
               MB = 1
            ELSE
               IF ( A(MA+1,MA).EQ.ZERO ) THEN
                  ME = MA
                  MB = 1
               ELSE
                  ME = MA + 1
                  MB = 2
               END IF
            END IF
C
C           Assemble Kronecker product system of linear equations with
C           matrix
C
C              MAT = kron(C',A(MA:ME,MA:ME)') + kron(D',E(MA:ME,MA:ME)')
C
C           and right hand side
C
C              RHS = vec(X(MA:ME,:)).
C
            IF ( N.EQ.1 ) THEN
               DIMMAT = MB
               DO 60 I = 1, MB
                  MAI = MA + I - 1
                  DO 40 J = 1, MB
                     MAJ = MA + J - 1
                     MAT(I,J) = C(1,1)*A(MAJ,MAI)
                     IF ( MAJ.LE.MAI )
     $                  MAT(I,J) = MAT(I,J) + D(1,1)*E(MAJ,MAI)
   40             CONTINUE
                  RHS(I) = X(MAI,1)
   60          CONTINUE
            ELSE
               DIMMAT = 2*MB
               DO 100 I = 1, MB
                  MAI = MA + I - 1
                  DO 80 J = 1, MB
                     MAJ = MA + J - 1
                     MAT(I,J)       = C(1,1)*A(MAJ,MAI)
                     MAT(MB+I,J)    = C(1,2)*A(MAJ,MAI)
                     MAT(I,MB+J)    = C(2,1)*A(MAJ,MAI)
                     MAT(MB+I,MB+J) = C(2,2)*A(MAJ,MAI)
                     IF ( MAJ.LE.MAI ) THEN
                        MAT(I,J)       = MAT(I,J)    + D(1,1)*E(MAJ,MAI)
                        MAT(MB+I,J)    = MAT(MB+I,J) + D(1,2)*E(MAJ,MAI)
                        MAT(I,MB+J)    = MAT(I,MB+J) + D(2,1)*E(MAJ,MAI)
                        MAT(MB+I,MB+J) = MAT(MB+I,MB+J) +
     $                                   D(2,2)*E(MAJ,MAI)
                     END IF
   80             CONTINUE
                  RHS(I)    = X(MAI,1)
                  RHS(MB+I) = X(MAI,2)
  100          CONTINUE
            END IF
C
C           Solve the system of linear equations.
C
            CALL DGETC2( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
            IF ( INFO1.NE.0 )
     $         INFO = 1
            CALL DGESC2( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
            IF ( SCALE1.NE.ONE ) THEN
               SCALE = SCALE1*SCALE
               CALL DLASCL( 'G', 0, 0, ONE, SCALE1, M, N, X, LDX, INFO1)
            END IF
C
            CALL DCOPY( MB, RHS, 1, X(MA,1), 1 )
            IF ( N.EQ.2 )
     $         CALL DCOPY( MB, RHS(MB+1), 1, X(MA,2), 1 )
C
C           Update right hand sides.
C
C           X(ME+1:M,:) = X(ME+1:M,:) - A(MA:ME,ME+1:M)'*X(MA:ME,:)*C
C
C           X(ME+1:M,:) = X(ME+1:M,:) - E(MA:ME,ME+1:M)'*X(MA:ME,:)*D
C
            IF ( ME.LT.M ) THEN
               CALL DGEMM( 'N', 'N', MB, N, N, ONE, X(MA,1), LDX, C,
     $                     LDC, ZERO, TM, 2 )
               CALL DGEMM( 'T', 'N', M-ME, N, MB, MONE, A(MA,ME+1), LDA,
     $                     TM, 2, ONE, X(ME+1,1), LDX )
               CALL DGEMM( 'N', 'N', MB, N, N, ONE, X(MA,1), LDX, D,
     $                     LDD, ZERO, TM, 2 )
               CALL DGEMM( 'T', 'N', M-ME, N, MB, MONE, E(MA,ME+1), LDE,
     $                     TM, 2, ONE, X(ME+1,1), LDX )
            END IF
C
         GOTO 20
         END IF
C        END WHILE 20
C
      ELSE
C
C        Solve equation (2).
C
C        Compute block row X(MA:ME,:). MB denotes the number of rows in
C        this block row.
C
         MA = M + 1
C        WHILE ( MA.NE.1 ) DO
  120    CONTINUE
         IF ( MA.NE.1 ) THEN
            ME = MA - 1
            IF ( ME.EQ.1 ) THEN
               MA = 1
               MB = 1
            ELSE
               IF ( A(ME,ME-1).EQ.ZERO ) THEN
                  MA = ME
                  MB = 1
               ELSE
                  MA = ME - 1
                  MB = 2
               END IF
            END IF
C
C           Assemble Kronecker product system of linear equations with
C           matrix
C
C              MAT = kron(C,A(MA:ME,MA:ME)) + kron(D,E(MA:ME,MA:ME))
C
C           and right hand side
C
C              RHS = vec(X(MA:ME,:)).
C
            IF ( N.EQ.1 ) THEN
               DIMMAT = MB
               DO 160 I = 1, MB
                  MAI = MA + I - 1
                  DO 140 J = 1, MB
                     MAJ = MA + J - 1
                     MAT(I,J) = C(1,1)*A(MAI,MAJ)
                     IF ( MAJ.GE.MAI )
     $                  MAT(I,J) = MAT(I,J) + D(1,1)*E(MAI,MAJ)
  140             CONTINUE
                  RHS(I) = X(MAI,1)
  160          CONTINUE
            ELSE
               DIMMAT = 2*MB
               DO 200 I = 1, MB
                  MAI = MA + I - 1
                  DO 180 J = 1, MB
                     MAJ = MA + J - 1
                     MAT(I,J)       = C(1,1)*A(MAI,MAJ)
                     MAT(MB+I,J)    = C(2,1)*A(MAI,MAJ)
                     MAT(I,MB+J)    = C(1,2)*A(MAI,MAJ)
                     MAT(MB+I,MB+J) = C(2,2)*A(MAI,MAJ)
                     IF ( MAJ.GE.MAI ) THEN
                        MAT(I,J)       = MAT(I,J)    + D(1,1)*E(MAI,MAJ)
                        MAT(MB+I,J)    = MAT(MB+I,J) + D(2,1)*E(MAI,MAJ)
                        MAT(I,MB+J)    = MAT(I,MB+J) + D(1,2)*E(MAI,MAJ)
                        MAT(MB+I,MB+J) = MAT(MB+I,MB+J) +
     $                                   D(2,2)*E(MAI,MAJ)
                     END IF
  180             CONTINUE
                  RHS(I)    = X(MAI,1)
                  RHS(MB+I) = X(MAI,2)
  200          CONTINUE
            END IF
C
C           Solve the system of linear equations.
C
            CALL DGETC2( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
            IF ( INFO1.NE.0 )
     $         INFO = 1
            CALL DGESC2( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
            IF ( SCALE1.NE.ONE ) THEN
               SCALE = SCALE1*SCALE
               CALL DLASCL( 'G', 0, 0, ONE, SCALE1, M, N, X, LDX, INFO1)
            END IF
C
            CALL DCOPY( MB, RHS, 1, X(MA,1), 1 )
            IF ( N.EQ.2 )
     $         CALL DCOPY( MB, RHS(MB+1), 1, X(MA,2), 1 )
C
C           Update right hand sides.
C
C           X(1:MA-1,:) = X(1:MA-1,:) - A(1:MA-1,MA:ME)*X(MA:ME,:)*C'
C
C           X(1:MA-1,:) = X(1:MA-1,:) - E(1:MA-1,MA:ME)*X(MA:ME,:)*D'
C
            IF ( MA.GT.1 ) THEN
               CALL DGEMM( 'N', 'T', MB, N, N, ONE, X(MA,1), LDX, C,
     $                     LDC, ZERO, TM, 2 )
               CALL DGEMM( 'N', 'N', MA-1, N, MB, MONE, A(1,MA), LDA,
     $                     TM, 2, ONE, X, LDX )
               CALL DGEMM( 'N', 'T', MB, N, N, ONE, X(MA,1), LDX, D,
     $                     LDD, ZERO, TM, 2 )
               CALL DGEMM( 'N', 'N', MA-1, N, MB, MONE, E(1,MA), LDE,
     $                     TM, 2, ONE, X, LDX )
            END IF
C
         GOTO 120
         END IF
C        END WHILE 120
C
      END IF
C
      RETURN
C *** Last line of SG03BW ***
      END