control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
      SUBROUTINE SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
     $                   DK, LDDK, RCOND, IWORK, DWORK, LDWORK, BWORK,
     $                   INFO )
C
C     PURPOSE
C
C     To compute the matrices of the positive feedback controller
C
C              | Ak | Bk |
C          K = |----|----|
C              | Ck | Dk |
C
C     for the shaped plant
C
C              | A | B |
C          G = |---|---|
C              | C | D |
C
C     in the McFarlane/Glover Loop Shaping Design Procedure.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the plant.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A of the shaped plant.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             system input matrix B of the shaped plant.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading NP-by-N part of this array must contain the
C             system output matrix C of the shaped plant.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading NP-by-M part of this array must contain the
C             system matrix D of the shaped plant.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     FACTOR  (input) DOUBLE PRECISION
C             = 1 implies that an optimal controller is required;
C             > 1 implies that a suboptimal controller is required,
C                 achieving a performance FACTOR less than optimal.
C             FACTOR >= 1.
C
C     NK      (output) INTEGER
C             The order of the positive feedback controller.  NK <= N.
C
C     AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
C             The leading NK-by-NK part of this array contains the
C             controller state matrix Ak.
C
C     LDAK    INTEGER
C             The leading dimension of the array AK.  LDAK >= max(1,N).
C
C     BK      (output) DOUBLE PRECISION array, dimension (LDBK,NP)
C             The leading NK-by-NP part of this array contains the
C             controller input matrix Bk.
C
C     LDBK    INTEGER
C             The leading dimension of the array BK.  LDBK >= max(1,N).
C
C     CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
C             The leading M-by-NK part of this array contains the
C             controller output matrix Ck.
C
C     LDCK    INTEGER
C             The leading dimension of the array CK.  LDCK >= max(1,M).
C
C     DK      (output) DOUBLE PRECISION array, dimension (LDDK,NP)
C             The leading M-by-NP part of this array contains the
C             controller matrix Dk.
C
C     LDDK    INTEGER
C             The leading dimension of the array DK.  LDDK >= max(1,M).
C
C     RCOND   (output) DOUBLE PRECISION array, dimension (2)
C             RCOND(1) contains an estimate of the reciprocal condition
C                      number of the X-Riccati equation;
C             RCOND(2) contains an estimate of the reciprocal condition
C                      number of the Z-Riccati equation.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (max(2*N,N*N,M,NP))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 4*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
C                       max( 6*N*N + 5 + max(1,4*N*N+8*N), N*NP + 2*N ).
C             For good performance, LDWORK must generally be larger.
C             An upper bound of LDWORK in the above formula is
C             LDWORK >= 10*N*N + M*M + NP*NP + 2*M*N + 2*N*NP + 4*N +
C                       5 + max(1,4*N*N+8*N).
C
C     BWORK   LOGICAL array, dimension (2*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the X-Riccati equation is not solved successfully;
C             = 2:  the Z-Riccati equation is not solved successfully;
C             = 3:  the iteration to compute eigenvalues or singular
C                   values failed to converge;
C             = 4:  the matrix Ip - D*Dk is singular;
C             = 5:  the matrix Im - Dk*D is singular;
C             = 6:  the closed-loop system is unstable.
C
C     METHOD
C
C     The routine implements the formulas given in [1].
C
C     REFERENCES
C
C     [1] McFarlane, D. and Glover, K.
C         A loop shaping design procedure using H_infinity synthesis.
C         IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
C         1992.
C
C     NUMERICAL ASPECTS
C
C     The accuracy of the results depends on the conditioning of the
C     two Riccati equations solved in the controller design (see the
C     output parameter RCOND).
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Oct. 2000,
C     Feb. 2001.
C
C     KEYWORDS
C
C     H_infinity control, Loop-shaping design, Robust control.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDWORK, M, N, NK, NP
      DOUBLE PRECISION   FACTOR
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      LOGICAL            BWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   RCOND( 2 )
C     ..
C     .. Local Scalars ..
      CHARACTER*1        HINV
      INTEGER            I, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10,
     $                   I11, I12, I13, INFO2, IWRK, J, LWA, LWAMAX,
     $                   MINWRK, N2, NS, SDIM
      DOUBLE PRECISION   SEP, FERR, GAMMA
C     ..
C     .. External Functions ..
      LOGICAL            SELECT
      EXTERNAL           SELECT
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEES, DGEMM, DLACPY, DLASET, DPOTRF, DPOTRS,
     $                   DSYRK, DTRSM, MB02VD, SB02RD, SB10JD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, SQRT
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
         INFO = -9
      ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
         INFO = -11
      ELSE IF( FACTOR.LT.ONE ) THEN
         INFO = -12
      ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
         INFO = -17
      ELSE IF( LDCK.LT.MAX( 1, M ) ) THEN
         INFO = -19
      ELSE IF( LDDK.LT.MAX( 1, M ) ) THEN
         INFO = -21
      END IF
C
C     Compute workspace.
C
      MINWRK = 4*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
     $         MAX( 6*N*N + 5 + MAX( 1, 4*N*N + 8*N ), N*NP + 2*N )
      IF( LDWORK.LT.MINWRK ) THEN
         INFO = -25
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB10ID', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 ) THEN
         RCOND( 1 ) = ONE
         RCOND( 2 ) = ONE
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
C     Workspace usage.
C
      I1  = N*N
      I2  = I1  + N*N
      I3  = I2  + M*N
      I4  = I3  + M*N
      I5  = I4  + M*M
      I6  = I5  + NP*NP
      I7  = I6  + NP*N
      I8  = I7  + N*N
      I9  = I8  + N*N
      I10 = I9  + N*N
      I11 = I10 + N*N
      I12 = I11 + 2*N
      I13 = I12 + 2*N
C
      IWRK = I13 + 4*N*N
C
C     Compute D'*C .
C
      CALL DGEMM( 'T', 'N', M, N, NP, ONE, D, LDD, C, LDC, ZERO,
     $            DWORK( I2+1 ), M )
C
C     Compute S = Im + D'*D .
C
      CALL DLASET( 'U', M, M, ZERO, ONE, DWORK( I4+1 ), M )
      CALL DSYRK( 'U', 'T', M, NP, ONE, D, LDD, ONE, DWORK( I4+1 ), M )
C
C     Factorize S, S = T'*T, with T upper triangular.
C
      CALL DPOTRF( 'U', M, DWORK( I4+1 ), M, INFO2 )
C
C              -1
C     Compute S  D'*C .
C
      CALL DPOTRS( 'U', M, N, DWORK( I4+1 ), M, DWORK( I2+1 ), M,
     $             INFO2 )
C
C                -1
C     Compute B*T  .
C
      CALL DLACPY( 'F', N, M, B, LDB, DWORK( I3+1 ), N )
      CALL DTRSM(  'R', 'U', 'N', 'N', N, M, ONE, DWORK( I4+1 ), M,
     $             DWORK( I3+1 ), N )
C
C     Compute R = Ip + D*D' .
C
      CALL DLASET( 'U', NP, NP, ZERO, ONE, DWORK( I5+1 ), NP )
      CALL DSYRK( 'U', 'N', NP, M, ONE, D, LDD, ONE, DWORK( I5+1 ), NP )
C
C     Factorize R, R = U'*U, with U upper triangular.
C
      CALL DPOTRF( 'U', NP, DWORK( I5+1 ), NP, INFO2 )
C
C              -T
C     Compute U  C .
C
      CALL DLACPY( 'F', NP, N, C, LDC, DWORK( I6+1 ), NP )
      CALL DTRSM(  'L', 'U', 'T', 'N', NP, N, ONE, DWORK( I5+1 ), NP,
     $             DWORK( I6+1 ), NP )
C
C                         -1
C     Compute Ar = A - B*S  D'*C .
C
      CALL DLACPY( 'F', N, N, A, LDA, DWORK( I7+1 ), N )
      CALL DGEMM( 'N', 'N', N, N, M, -ONE, B, LDB, DWORK( I2+1 ), M,
     $            ONE, DWORK( I7+1 ), N )
C
C                                            -1
C     Compute the upper triangle of Cr = C'*R  *C .
C
      CALL DSYRK( 'U', 'T', N, NP, ONE, DWORK( I6+1 ), NP, ZERO,
     $            DWORK( I8+1 ), N )
C
C                                           -1
C     Compute the upper triangle of Dr = B*S  B' .
C
      CALL DSYRK( 'U', 'N', N, M, ONE, DWORK( I3+1 ), N, ZERO,
     $            DWORK( I9+1 ), N )
C
C     Solution of the Riccati equation Ar'*X + X*Ar + Cr - X*Dr*X = 0 .
C     Workspace:    need   10*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
C                                   5 + max(1,4*N*N+8*N).
C                   prefer larger.
C                   AK is used as workspace.
C
      N2 = 2*N
      CALL SB02RD( 'A', 'C', HINV, 'N', 'U', 'G', 'S', 'N', 'O', N,
     $             DWORK( I7+1 ), N, DWORK( I10+1 ), N, AK, LDAK,
     $             DWORK( I9+1 ), N, DWORK( I8+1 ), N, DWORK, N, SEP,
     $             RCOND( 1 ), FERR, DWORK( I11+1 ), DWORK( I12+1 ),
     $             DWORK( I13+1 ), N2, IWORK, DWORK( IWRK+1 ),
     $             LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
      LWA = INT( DWORK( IWRK+1 ) ) + IWRK
      LWAMAX = MAX( MINWRK, LWA )
C
C     Solution of the Riccati equation Ar*Z + Z*Ar' + Dr - Z*Cr*Z = 0 .
C
      CALL SB02RD( 'A', 'C', HINV, 'T', 'U', 'G', 'S', 'N', 'O', N,
     $             DWORK( I7+1 ), N, DWORK( I10+1 ), N, AK, LDAK,
     $             DWORK( I8+1 ), N, DWORK( I9+1 ), N, DWORK( I1+1 ),
     $             N, SEP, RCOND( 2 ), FERR, DWORK( I11+1 ),
     $             DWORK( I12+1 ), DWORK( I13+1 ), N2, IWORK,
     $             DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 2
         RETURN
      END IF
      LWA = INT( DWORK( IWRK+1 ) ) + IWRK
      LWAMAX = MAX( LWA, LWAMAX )
C
C                      -1        -1
C     Compute F1 = -( S  D'*C + S  B'*X ) .
C
      CALL DTRSM(  'R', 'U', 'T', 'N', N, M, ONE, DWORK( I4+1 ), M,
     $             DWORK( I3+1 ), N )
      CALL DGEMM( 'T', 'N', M, N, N, -ONE, DWORK( I3+1 ), N, DWORK, N,
     $            -ONE, DWORK( I2+1 ), M )
C
C     Compute gamma .
C
      CALL DGEMM( 'N', 'N', N, N, N, ONE, DWORK, N, DWORK( I1+1 ), N,
     $            ZERO, DWORK( I7+1 ), N )
      CALL DGEES( 'N', 'N', SELECT, N, DWORK( I7+1 ), N, SDIM,
     $            DWORK( I11+1 ), DWORK( I12+1 ), DWORK( IWRK+1 ), N,
     $            DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 3
         RETURN
      END IF
      LWA = INT( DWORK( IWRK+1 ) ) + IWRK
      LWAMAX = MAX( LWA, LWAMAX )
      GAMMA = ZERO
      DO 10 I = 1, N
         GAMMA = MAX( GAMMA, DWORK( I11+I ) )
   10 CONTINUE
      GAMMA = FACTOR*SQRT( ONE + GAMMA )
C
C     Workspace usage.
C     Workspace:    need   4*N*N + M*N + N*NP.
C
      I4 = I3 + N*N
      I5 = I4 + N*N
C
C     Compute Ac = A + B*F1 .
C
      CALL DLACPY( 'F', N, N, A, LDA, DWORK( I4+1 ), N )
      CALL DGEMM( 'N', 'N', N, N, M, ONE, B, LDB, DWORK( I2+1 ), M,
     $            ONE, DWORK( I4+1 ), N )
C
C     Compute W1' = (1-gamma^2)*In + Z*X .
C
      CALL DLASET( 'F', N, N, ZERO, ONE-GAMMA*GAMMA, DWORK( I3+1 ), N )
      CALL DGEMM( 'N', 'N', N, N, N, ONE, DWORK( I1+1 ), N, DWORK, N,
     $            ONE, DWORK( I3+1 ), N )
C
C     Compute Bcp = gamma^2*Z*C' .
C
      CALL DGEMM( 'N', 'T', N, NP, N, GAMMA*GAMMA, DWORK( I1+1 ), N, C,
     $            LDC, ZERO, BK, LDBK )
C
C     Compute C + D*F1 .
C
      CALL DLACPY( 'F', NP, N, C, LDC, DWORK( I5+1 ), NP )
      CALL DGEMM( 'N', 'N', NP, N, M, ONE, D, LDD, DWORK( I2+1 ), M,
     $            ONE, DWORK( I5+1 ), NP )
C
C     Compute Acp = W1'*Ac + gamma^2*Z*C'*(C+D*F1) .
C
      CALL DGEMM( 'N', 'N', N, N, N, ONE, DWORK( I3+1 ), N,
     $            DWORK( I4+1 ), N, ZERO, AK, LDAK )
      CALL DGEMM( 'N', 'N', N, N, NP, ONE, BK, LDBK,
     $            DWORK( I5+1 ), NP, ONE, AK, LDAK )
C
C     Compute Ccp = B'*X .
C
      CALL DGEMM( 'T', 'N', M, N, N, ONE, B, LDB, DWORK, N, ZERO,
     $             CK, LDCK )
C
C     Set Dcp = -D' .
C
      DO 30 I = 1, M
         DO 20 J = 1, NP
            DK( I, J ) = -D( J, I )
   20    CONTINUE
   30 CONTINUE
C
      IWRK = I4
C
C     Reduce the generalized state-space description to a regular one.
C     Workspace:             need   3*N*N + M*N.
C     Additional workspace:  need   2*N*N + 2*N + N*MAX(5,N+M+NP).
C                            prefer larger.
C
      CALL SB10JD( N, NP, M, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK,
     $             DWORK( I3+1 ), N, NK, DWORK( IWRK+1 ), LDWORK-IWRK,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 3
         RETURN
      END IF
      LWA = INT( DWORK( IWRK+1 ) ) + IWRK
      LWAMAX = MAX( LWA, LWAMAX )
C
C     Workspace usage.
C     Workspace:    need   4*N*N + M*M + NP*NP + 2*M*N + 2*N*NP.
C                          (NK <= N.)
C
      I2 = NP*NP
      I3 = I2 + NK*NP
      I4 = I3 + M*M
      I5 = I4 + N*M
      I6 = I5 + NP*NK
      I7 = I6 + M*N
C
      IWRK = I7 + ( N + NK )*( N + NK )
C
C     Compute Ip - D*Dk .
C
      CALL DLASET( 'Full', NP, NP, ZERO, ONE, DWORK, NP )
      CALL DGEMM( 'N', 'N', NP, NP, M, -ONE, D, LDD, DK, LDDK, ONE,
     $             DWORK, NP )
C
C                         -1
C     Compute Bk*(Ip-D*Dk)  .
C
      CALL DLACPY( 'F', NK, NP, BK, LDBK, DWORK( I2+1 ), NK )
      CALL MB02VD( 'N', NK, NP, DWORK, NP, IWORK, DWORK( I2+1 ), NK,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 4
         RETURN
      END IF
C
C     Compute Im - Dk*D .
C
      CALL DLASET( 'Full', M, M, ZERO, ONE, DWORK( I3+1 ), M )
      CALL DGEMM( 'N', 'N', M, M, NP, -ONE, DK, LDDK, D, LDD, ONE,
     $             DWORK( I3+1 ), M )
C
C                        -1
C     Compute B*(Im-Dk*D)  .
C
      CALL DLACPY( 'F', N, M, B, LDB, DWORK( I4+1 ), N )
      CALL MB02VD( 'N', N, M, DWORK( I3+1 ), M, IWORK, DWORK( I4+1 ), N,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 5
         RETURN
      END IF
C
C     Compute D*Ck .
C
      CALL DGEMM( 'N', 'N', NP, NK, M, ONE, D, LDD, CK, LDCK, ZERO,
     $             DWORK( I5+1 ), NP )
C
C     Compute Dk*C .
C
      CALL DGEMM( 'N', 'N', M, N, NP, ONE, DK, LDDK, C, LDC, ZERO,
     $            DWORK( I6+1 ), M )
C
C     Compute the closed-loop state matrix.
C
      CALL DLACPY( 'F', N, N, A, LDA, DWORK( I7+1 ), N+NK )
      CALL DGEMM( 'N', 'N', N, N, M, ONE, DWORK( I4+1 ), N,
     $            DWORK( I6+1 ), M, ONE, DWORK( I7+1 ), N+NK )
      CALL DGEMM( 'N', 'N', NK, N, NP, ONE, DWORK( I2+1 ), NK, C, LDC,
     $            ZERO, DWORK( I7+N+1 ), N+NK )
      CALL DGEMM( 'N', 'N', N, NK, M, ONE, DWORK( I4+1 ), N, CK, LDCK,
     $            ZERO, DWORK( I7+(N+NK)*N+1 ), N+NK )
      CALL DLACPY( 'F', NK, NK, AK, LDAK, DWORK( I7+(N+NK)*N+N+1 ),
     $             N+NK )
      CALL DGEMM( 'N', 'N', NK, NK, NP, ONE, DWORK( I2+1 ), NK,
     $            DWORK( I5+1 ), NP, ONE, DWORK( I7+(N+NK)*N+N+1 ),
     $            N+NK )
C
C     Compute the closed-loop poles.
C     Additional workspace:  need 3*(N+NK);  prefer larger.
C     The fact that M > 0, NP > 0, and NK <= N is used here.
C
      CALL DGEES( 'N', 'N', SELECT, N+NK, DWORK( I7+1 ), N+NK, SDIM,
     $            DWORK, DWORK( N+NK+1 ), DWORK( IWRK+1 ), N,
     $            DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.NE.0 ) THEN
         INFO = 3
         RETURN
      END IF
      LWA = INT( DWORK( IWRK+1 ) ) + IWRK
      LWAMAX = MAX( LWA, LWAMAX )
C
C     Check the stability of the closed-loop system.
C
      NS = 0
      DO 40 I = 1, N+NK
         IF( DWORK( I ).GE.ZERO ) NS = NS + 1
   40 CONTINUE
      IF( NS.GT.0 ) THEN
         INFO = 6
         RETURN
      END IF
C
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB10ID ***
      END