control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
      SUBROUTINE MB03JD( COMPQ, N, A, LDA, D, LDD, B, LDB, F, LDF, Q,
     $                   LDQ, NEIG, IWORK, LIWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To move the eigenvalues with strictly negative real parts of an
C     N-by-N real skew-Hamiltonian/Hamiltonian pencil aS - bH in
C     structured Schur form,
C
C           (  A  D  )      (  B  F  )
C       S = (        ), H = (        ),
C           (  0  A' )      (  0 -B' )
C
C     with A upper triangular and B upper quasi-triangular, to the
C     leading principal subpencil, while keeping the triangular form.
C     The notation M' denotes the transpose of the matrix M.
C     The matrices S and H are transformed by an orthogonal matrix Q
C     such that
C
C                            (  Aout  Dout  )  
C       Sout = J Q' J' S Q = (              ),
C                            (    0   Aout' )  
C                                                                    (1)
C                            (  Bout  Fout  )           (  0  I  )
C       Hout = J Q' J' H Q = (              ), with J = (        ),
C                            (  0    -Bout' )           ( -I  0  )
C
C     where Aout is upper triangular and Bout is upper quasi-triangular.
C     Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal matrix Q
C     that fulfills (1), is computed.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             Specifies whether or not the orthogonal transformations
C             should be accumulated in the array Q, as follows:
C             = 'N':  Q is not computed;
C             = 'I':  the array Q is initialized internally to the unit
C                     matrix, and the orthogonal matrix Q is returned;
C             = 'U':  the array Q contains an orthogonal matrix Q0 on
C                     entry, and the matrix Q0*Q is returned, where Q
C                     is the product of the orthogonal transformations
C                     that are applied to the pencil aS - bH to reorder
C                     the eigenvalues.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the pencil aS - bH.  N >= 0, even.
C
C     A       (input/output) DOUBLE PRECISION array, dimension
C                            (LDA, N/2)
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the upper triangular matrix A. The elements of the
C             strictly lower triangular part of this array are not used.
C             On exit, the leading  N/2-by-N/2 part of this array
C             contains the transformed matrix Aout.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1, N/2).
C
C     D       (input/output) DOUBLE PRECISION array, dimension
C                           (LDD, N/2)
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the upper triangular part of the skew-symmetric
C             matrix D. The diagonal need not be set to zero.
C             On exit, the leading  N/2-by-N/2 part of this array
C             contains the transformed upper triangular part of the
C             matrix Dout.
C             The strictly lower triangular part of this array is
C             not referenced, except for the element D(N/2,N/2-1), but
C             its initial value is preserved.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1, N/2).
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C                            (LDB, N/2)
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the upper quasi-triangular matrix B.
C             On exit, the leading  N/2-by-N/2 part of this array
C             contains the transformed upper quasi-triangular part of
C             the matrix Bout.
C             The part below the first subdiagonal of this array is
C             not referenced.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1, N/2).
C
C     F       (input/output) DOUBLE PRECISION array, dimension
C                           (LDF, N/2)
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the upper triangular part of the symmetric matrix
C             F.
C             On exit, the leading  N/2-by-N/2 part of this array
C             contains the transformed upper triangular part of the
C             matrix Fout.
C             The strictly lower triangular part of this array is not
C             referenced, except for the element F(N/2,N/2-1), but its
C             initial value is preserved.
C
C     LDF     INTEGER
C             The leading dimension of the array F.  LDF >= MAX(1, N/2).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
C             On entry, if COMPQ = 'U', then the leading N-by-N part of
C             this array must contain a given matrix Q0, and on exit,
C             the leading N-by-N part of this array contains the product
C             of the input matrix Q0 and the transformation matrix Q
C             used to transform the matrices S and H.
C             On exit, if COMPQ = 'I', then the leading N-by-N part of
C             this array contains the orthogonal transformation matrix
C             Q.
C             If COMPQ = 'N' this array is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.
C             LDQ >= 1,         if COMPQ = 'N';
C             LDQ >= MAX(1, N), if COMPQ = 'I' or COMPQ = 'U'.
C
C     NEIG    (output) INTEGER
C             The number of eigenvalues in aS - bH with strictly
C             negative real part.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C
C     LIWORK  INTEGER
C             The dimension of the array IWORK.
C             LIWORK >= N+1.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             If COMPQ = 'N',
C                LDWORK >= MAX(2*N+32,108);
C             if COMPQ = 'I' or COMPQ = 'U',
C                LDWORK >= MAX(4*N+32,108).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0: succesful exit;
C             < 0: if INFO = -i, the i-th argument had an illegal value;
C             = 1: error occured during execution of MB03DD;
C             = 2: error occured during execution of MB03HD.
C
C     METHOD
C
C     The algorithm reorders the eigenvalues like the following scheme:
C
C     Step 1: Reorder the eigenvalues in the subpencil aA - bB.
C          I. Reorder the eigenvalues with negative real parts to the
C             top.
C         II. Reorder the eigenvalues with positive real parts to the
C             bottom.
C
C     Step 2: Reorder the remaining eigenvalues with negative real
C             parts in the pencil aS - bH.
C          I. Exchange the eigenvalues between the last diagonal block
C             in aA - bB and the last diagonal block in aS - bH.
C         II. Move the eigenvalues of the R-th block to the (MM+1)-th
C             block, where R denotes the number of upper quasi-
C             triangular blocks in aA - bB and MM denotes the current
C             number of blocks in aA - bB with eigenvalues with negative
C             real parts.
C
C     The algorithm uses a sequence of orthogonal transformations as
C     described on page 33 in [1]. To achieve those transformations the
C     elementary subroutines MB03DD and MB03HD are called for the
C     corresponding matrix structures.
C
C     REFERENCES
C
C     [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
C         Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
C         Eigenproblems.
C         Tech. Rep., Technical University Chemnitz, Germany,
C         Nov. 2007.
C
C     NUMERICAL ASPECTS
C                                                               3
C     The algorithm is numerically backward stable and needs O(N ) real
C     floating point operations.
C
C     CONTRIBUTOR
C
C     Matthias Voigt, Fakultaet fuer Mathematik, Technische Universitaet
C     Chemnitz, October 16, 2008.
C     V. Sima, Dec. 2009 (SLICOT version of the routine DHAUNX).
C
C     REVISIONS
C
C     V. Sima, Aug. 2009; Jan. 2010, Oct. 2010, Nov. 2010.
C     M. Voigt, Jan. 2012.
C
C     KEYWORDS
C
C     Eigenvalue reordering, upper (quasi-)triangular matrix,
C     skew-Hamiltonian/Hamiltonian pencil, structured Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, HALF, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0,
     $                     TEN = 1.0D+1 )
C
C     .. Scalar Arguments ..
      CHARACTER          COMPQ
      INTEGER            INFO, LDA, LDB, LDD, LDF, LDQ, LDWORK, LIWORK,
     $                   N, NEIG
C
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( LDD, * ),
     $                   DWORK( * ),  F( LDF, * ), Q( LDQ, * )
C
C     .. Local Scalars ..
      LOGICAL            LCMPQ, LINIQ, LUPDQ
      INTEGER            DIM1, DIM2, HLP, I, IA, IAUPLE, IB, IB1, IB2,
     $                   IB3, IBUPLE, IBUPRI, IC, ICS, IQ1, IQ2, IQLOLE,
     $                   IQLORI, IQUPLE, IQUPRI, IR, IS, ITMP1, ITMP2,
     $                   ITMP3, IUPD, IWRK1, IWRK2, IWRK3, IWRK4, IWRK5,
     $                   J, K, LDW, M, MM, MP, NCOL, NCOLS, NROW, NROWS,
     $                   OPTDW, R, SDIM, UPDS
      DOUBLE PRECISION   A2, D1, D2, D3, F2, NRMA, NRMB, PREC, Q11, Q12,
     $                   Q21, Q22, TMP, TOL
C
C     .. Local Arrays ..
      DOUBLE PRECISION   PAR( 2 )
C
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT, DLAMCH, DLANHS, DLANTR
      EXTERNAL           DDOT, DLAMCH, DLANHS, DLANTR, LSAME
C
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMM, DGEMV, DLACPY, DLASET,
     $                   DSCAL, MB01LD, MB01RU, MB01RX, MB03DD, MB03HD,
     $                   XERBLA
C
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD, SIGN
C
C     .. Executable Statements ..
C
C     Decode the input arguments.
C
      M = N/2
      LINIQ = LSAME( COMPQ, 'I' )
      LUPDQ = LSAME( COMPQ, 'U' )
      LCMPQ = LINIQ .OR. LUPDQ
      IF( LCMPQ ) THEN
         OPTDW = MAX( 4*N+32, 108 )
      ELSE
         OPTDW = MAX( 2*N+32, 108 )
      END IF
C
C     Test the input arguments.
C
      INFO = 0
      IF( .NOT.( LSAME( COMPQ, 'N' ) .OR. LCMPQ ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. MOD( N, 2 ).NE.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LDQ.LT.1 .OR. ( LCMPQ .AND. LDQ.LT.N ) ) THEN
         INFO = -12
      ELSE IF( LIWORK.LT.N+1 ) THEN
         INFO = -15
      ELSE IF( LDWORK.LT.OPTDW ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0) THEN
         CALL XERBLA( 'MB03JD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         NEIG = 0
         RETURN
      END IF
C
C     Determine machine constants.
C
      PREC = DLAMCH( 'Precision' )
      TOL  = MIN( DBLE( N ), TEN )*PREC
C
      PAR( 1 ) = PREC
      PAR( 2 ) = DLAMCH( 'Safe minimum' )
C
C     STEP 0: Determine location and size of diagonal blocks.
C             IWORK(J) and IWORK(IS+J) are used to indicate the
C             beginning index and the kind of eigenvalues of the
C             J-th diagonal block of the subpencil aA - bB. For a
C             2-by-2 block, it is assumed that both eigenvalues have
C             real parts with the same sign (true for a structured
C             Schur form).
C
      I  = 1
      J  = 1
      IS = M + 1
C
      NRMA = DLANTR( 'One', 'Upper', 'Non-diag', M, M, A, LDA, DWORK )
      NRMB = DLANHS( 'One', M, B, LDB, DWORK )
C
C     Partition blocks.
C
C     WHILE( I.LE.M-1 ) DO
C
   10 CONTINUE
      IF( I.LE.M-1 ) THEN
         IWORK( J ) = I
         IF( ABS( B( I+1, I ) ).LE.TOL*NRMB ) THEN
C
C           1-by-1 block.
C
            B( I+1, I ) = ZERO
            IF( ABS( A( I, I ) ).LE.TOL*NRMA .OR.
     $          ABS( B( I, I ) ).LE.TOL*NRMB ) THEN
C
C              Eigenvalue is infinite, 0, or 0/0.
C
               IWORK( IS+J ) = 0
            ELSE
               IWORK( IS+J ) = INT( SIGN( ONE, A( I, I )*B( I, I ) ) )
            END IF
            I = I + 1
         ELSE
C
C           2-by-2 block.
C
            IF( A( I, I ).EQ.ZERO .OR. A( I+1, I+1 ).EQ.ZERO ) THEN
C
C              Eigenvalue is infinite.
C
               IWORK( IS+J ) = 0
            ELSE
               TMP = ( B( I, I ) - ( B( I+1, I )   / A( I+1, I+1 ) )*
     $                               A( I, I+1 ) ) / A( I, I )  +
     $                               B( I+1, I+1 ) / A( I+1, I+1 )
               IF( TMP.EQ.ZERO ) THEN
                  IWORK( IS+J ) = 0
               ELSE
                  IWORK( IS+J ) = INT( SIGN( ONE, TMP ) )
               END IF
            END IF
            I = I + 2
         END IF
         J = J + 1
      GO TO 10
C
C     END WHILE 10
C
      END IF
C
      IF( I.EQ.M ) THEN
         IWORK( J ) = I
         IF( ABS( A( I, I ) ).LE.TOL*NRMA .OR.
     $       ABS( B( I, I ) ).LE.TOL*NRMB ) THEN
C
C           Eigenvalue is infinite or zero.
C
            IWORK( IS+J ) = 0
         ELSE
            IWORK( IS+J ) = INT( SIGN( ONE, A( I, I )*B( I, I ) ) )
         END IF
         J = J + 1
      END IF
C
      R = J - 1
C
C     Initialize Q if appropriate.
C
      IF( LINIQ ) THEN
         IUPD = M + 1
         UPDS = M
         CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
      ELSE IF( LUPDQ ) THEN
         IUPD = 1
         UPDS = N
      END IF
C
      IF( M.GT.1 ) THEN
C
C        Save the lower triangle of the submatrix D(M-1:M,M-1:M) and the
C        elements A(M,M-1), F(M,M-1), which might be overwritten.
C
         D1 = D( M-1, M-1 )
         D2 = D(   M, M-1 )
         D3 = D(   M,   M )
         A2 = A(   M, M-1 )
         F2 = F(   M, M-1 )
      END IF
C
C     STEP 1: Reorder the eigenvalues in the subpencil aA - bB.
C
      MM = 0
      MP = J
C
C     I. Reorder the eigenvalues with negative real parts to the top.
C
C     Set pointers for the inputs and outputs of MB03DD.
C
      IQ1   = 1
      IQ2   = IQ1 + 16
      IA    = IQ2 + 16
      IB    = IA  + 16
      IWRK1 = IB  + 16
      IWRK2 = IA
C
      K   = 1
      IB3 = M + 1
      IWORK( R+1 ) = IB3
C
C     WHILE( K.LE.R ) DO
C
   20 CONTINUE
      IF( K.LE.R ) THEN
         IF( IWORK( IS+K ).LT.0 ) THEN
            DO 30 J = K - 1, MM + 1, -1
C
C              IB1, IB2, and IB3 are pointers to 3 consecutive blocks.
C
               IB1  = IWORK( J )
               IB2  = IWORK( J+1 )
               IB3  = IWORK( J+2 )
               DIM1 = IB2  - IB1
               DIM2 = IB3  - IB2
               SDIM = DIM1 + DIM2
C
C              Copy the relevant part of A(ib1:ib3-1,ib1:ib3-1) and
C              B(ib1:ib3-1,ib1:ib3-1) to DWORK as inputs for MB03DD.
C              Also, set the additional zero elements.
C
               CALL DLACPY( 'Upper', SDIM, SDIM, A( IB1, IB1 ), LDA,
     $                      DWORK( IA ), SDIM )
               CALL DLASET( 'Lower', SDIM-1, SDIM-1, ZERO, ZERO,
     $                      DWORK( IA+1 ), SDIM )
               CALL DLACPY( 'Upper', SDIM, SDIM, B( IB1, IB1 ), LDB,
     $                      DWORK( IB ), SDIM )
               CALL DCOPY(  SDIM-1, B( IB1+1, IB1 ), LDB+1,
     $                      DWORK( IB+1 ), SDIM+1 )
               CALL DLASET( 'Lower', SDIM-2, SDIM-2, ZERO, ZERO,
     $                      DWORK( IB+2 ), SDIM )
C
C              Perform eigenvalue/matrix block exchange.
C              Workspace: IWRK1 + 43.
C
               CALL MB03DD( 'Triangular', DIM1, DIM2, PREC, DWORK( IB ),
     $                      SDIM, DWORK( IA ), SDIM, DWORK( IQ1 ), SDIM,
     $                      DWORK( IQ2 ), SDIM, DWORK( IWRK1 ),
     $                      LDWORK-IWRK1+1, INFO )
               IF( INFO.GT.0 ) THEN
                  INFO = 1
                  RETURN
               END IF
C
C              Copy the transformed diagonal blocks, if sdim > 2.
C
               NROWS = IB1 - 1
               NCOLS = M - IB3 + 1
               ICS   = IB3
               IF( SDIM.GT.2 ) THEN
                  CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IA ), SDIM,
     $                         A( IB1, IB1 ), LDA )
                  CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IB ), SDIM,
     $                         B( IB1, IB1 ), LDB )
                  CALL DCOPY(  SDIM-1, DWORK( IB+1 ), SDIM+1,
     $                         B( IB1+1, IB1 ), LDB+1 )
                  NROW = NROWS
                  NCOL = NCOLS
                  IC   = ICS
                  LDW  = MAX( 1, NROW )
               ELSE
                  TMP = A( IB1+1, IB1 )
                  A( IB1+1, IB1 ) = ZERO
                  NROW = IB3 - 1
                  NCOL = M - IB1 + 1
                  IC   = IB1
                  LDW  = NROW
               END IF
C
C              Update A.
C              Workspace: IWRK2 + 2*N - 1.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                      SDIM, ONE, A( 1, IB1 ), LDA, DWORK( IQ1 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                      A( 1, IB1 ), LDA )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM, A( IB1, IC ),
     $                      LDA, ZERO, DWORK( IWRK2 ), SDIM )
               CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                      A( IB1, IC ), LDA )
               IF( SDIM.EQ.2 )
     $            A( IB1+1, IB1 ) = TMP
C
C              Update D.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                      SDIM, ONE, D( 1, IB1 ), LDD, DWORK( IQ2 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                      D( 1, IB1 ), LDD )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                      D( IB1, ICS ), LDD, ZERO, DWORK( IWRK2 ),
     $                      SDIM )
               CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                      D( IB1, ICS ), LDD )
               CALL MB01LD( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                      D( IB1, IB1 ), LDD, DWORK( IQ2 ), SDIM,
     $                      D( IB1, IB1 ), LDD, DWORK( IWRK2 ),
     $                      LDWORK-IWRK2+1, INFO )
C
C              Update B.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                      SDIM, ONE, B( 1, IB1 ), LDB, DWORK( IQ1 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                      B( 1, IB1 ), LDB )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM, B( IB1, IC ),
     $                      LDB, ZERO, DWORK( IWRK2 ), SDIM )
               CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                      B( IB1, IC ), LDB )
C
C              Update F.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                      SDIM, ONE, F( 1, IB1 ), LDF, DWORK( IQ2 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                      F( 1, IB1 ), LDF )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                      F( IB1, ICS ), LDF, ZERO, DWORK( IWRK2 ),
     $                      SDIM )
               CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                      F( IB1, ICS ), LDF )
               CALL MB01RU( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                      F( IB1, IB1 ), LDF, DWORK( IQ2 ), SDIM,
     $                      F( IB1, IB1 ), LDF, DWORK( IWRK2 ),
     $                      LDWORK-IWRK2+1, INFO )
               CALL DSCAL( SDIM, HALF, F( IB1, IB1 ), LDF+1 )
C
               IF( LCMPQ ) THEN
C
C                 Update Q.
C                 Workspace: IWRK2 + 2*N - 1, if COMPQ = 'I';
C                            IWRK2 + 4*N - 1, if COMPQ = 'U'.
C
                  CALL DGEMM(  'No Transpose', 'No Transpose', UPDS,
     $                         SDIM, SDIM, ONE, Q( 1, IB1 ), LDQ,
     $                         DWORK( IQ1 ), SDIM, ZERO, DWORK( IWRK2 ),
     $                         UPDS )
                  CALL DLACPY( 'Full', UPDS, SDIM, DWORK( IWRK2 ), UPDS,
     $                         Q( 1, IB1 ), LDQ )
                  CALL DGEMM(  'No Transpose', 'No Transpose', UPDS,
     $                         SDIM, SDIM, ONE, Q( IUPD, M+IB1 ), LDQ,
     $                         DWORK( IQ2 ), SDIM, ZERO, DWORK( IWRK2 ),
     $                         UPDS )
                  CALL DLACPY( 'Full', UPDS, SDIM, DWORK( IWRK2 ), UPDS,
     $                         Q( IUPD, M+IB1 ), LDQ )
               END IF
C
C              Update index lists IWORK(1:M) and IWORK(M+2:N+1) if a
C              1-by-1 and 2-by-2 block have been swapped.
C
               HLP = DIM2 - DIM1
               IF( HLP.EQ.1 ) THEN
C
C                 First block was 2-by-2.
C
                  IWORK( J+1 ) = IB1 + 1
               ELSE IF( HLP.EQ.-1 ) THEN
C
C                 Second block was 2-by-2.
C
                  IWORK( J+1 ) = IB1 + 2
               END IF
C
C              Update IWORK(M+2:N+1).
C
               HLP = IWORK( IS+J )
               IWORK( IS+J )   = IWORK( IS+J+1 )
               IWORK( IS+J+1 ) = HLP
   30       CONTINUE
            MM = MM + 1
         END IF
         K = K + 1
      GO TO 20
C
C     END WHILE 20
C
      END IF
C
C     II. Reorder the eigenvalues with positive real parts to the bottom.
C
      K = R
C
C     WHILE( K.GE.MM+1 ) DO
C
   40 CONTINUE
      IF( K.GE.MM + 1 ) THEN
         IF( IWORK( IS+K ).GT.0 ) THEN
            DO 50 J = K, MP - 2
               IB1  = IWORK( J )
               IB2  = IWORK( J+1 )
               IB3  = IWORK( J+2 )
               DIM1 = IB2  - IB1
               DIM2 = IB3  - IB2
               SDIM = DIM1 + DIM2
C
C              Copy the relevant part of A(ib1:ib3-1,ib1:ib3-1) and
C              B(ib1:ib3-1,ib1:ib3-1) to DWORK as inputs for MB03DD.
C              Also, set the additional zero elements.
C
               CALL DLACPY( 'Upper', SDIM, SDIM, A( IB1, IB1 ), LDA,
     $                      DWORK( IA ), SDIM )
               CALL DLASET( 'Lower', SDIM-1, SDIM-1, ZERO, ZERO,
     $                      DWORK( IA+1 ), SDIM )
               CALL DLACPY( 'Upper', SDIM, SDIM, B( IB1, IB1 ), LDB,
     $                      DWORK( IB ), SDIM )
               CALL DCOPY(  SDIM-1, B( IB1+1, IB1 ), LDB+1,
     $                      DWORK( IB+1 ), SDIM+1 )
               CALL DLASET( 'Lower', SDIM-2, SDIM-2, ZERO, ZERO,
     $                      DWORK( IB+2 ), SDIM )
C
C              Perform eigenvalue/matrix block exchange.
C
               CALL MB03DD( 'Triangular', DIM1, DIM2, PREC, DWORK( IB ),
     $                      SDIM, DWORK( IA ), SDIM, DWORK( IQ1 ), SDIM,
     $                      DWORK( IQ2 ), SDIM, DWORK( IWRK1 ),
     $                      LDWORK-IWRK1+1, INFO )
               IF( INFO.GT.0 ) THEN
                  INFO = 1
                  RETURN
               END IF
C
C              Copy the transformed diagonal blocks, if sdim > 2.
C
               NROWS = IB1 - 1
               NCOLS = M - IB3 + 1
               ICS   = IB3
               IF( SDIM.GT.2 ) THEN
                  CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IA ), SDIM,
     $                         A( IB1, IB1 ), LDA )
                  CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IB ), SDIM,
     $                         B( IB1, IB1 ), LDB )
                  CALL DCOPY(  SDIM-1, DWORK( IB+1 ), SDIM+1,
     $                         B( IB1+1, IB1 ), LDB+1 )
                  NROW = NROWS
                  NCOL = NCOLS
                  IC   = ICS
                  LDW  = MAX( 1, NROW )
               ELSE
                  TMP = A( IB1+1, IB1 )
                  A( IB1+1, IB1 ) = ZERO
                  NROW = IB3 - 1
                  NCOL = M - IB1 + 1
                  IC   = IB1
                  LDW  = NROW
               END IF
C
C              Update A.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                      SDIM, ONE, A( 1, IB1 ), LDA, DWORK( IQ1 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                      A( 1, IB1 ), LDA )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM, A( IB1, IC ),
     $                      LDA, ZERO, DWORK( IWRK2 ), SDIM )
               CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                      A( IB1, IC ), LDA )
               IF( SDIM.EQ.2 )
     $            A( IB1+1, IB1 ) = TMP
C
C              Update D.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                      SDIM, ONE, D( 1, IB1 ), LDD, DWORK( IQ2 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                      D( 1, IB1 ), LDD )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                      D( IB1, ICS ), LDD, ZERO, DWORK( IWRK2 ),
     $                      SDIM )
               CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                      D( IB1, ICS ), LDD )
               CALL MB01LD( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                      D( IB1, IB1 ), LDD, DWORK( IQ2 ), SDIM,
     $                      D( IB1, IB1 ), LDD, DWORK( IWRK2 ),
     $                      LDWORK-IWRK2+1, INFO )
C
C              Update B.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                      SDIM, ONE, B( 1, IB1 ), LDB, DWORK( IQ1 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                      B( 1, IB1 ), LDB )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM, B( IB1, IC ),
     $                      LDB, ZERO, DWORK( IWRK2 ), SDIM )
               CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                      B( IB1, IC ), LDB )
C
C              Update F.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                      SDIM, ONE, F( 1, IB1 ), LDF, DWORK( IQ2 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), LDW )
               CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                      F( 1, IB1 ), LDF )
               CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                      SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                      F( IB1, ICS ), LDF, ZERO, DWORK( IWRK2 ),
     $                      SDIM )
               CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                      F( IB1, ICS ), LDF )
               CALL MB01RU( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                      F( IB1, IB1 ), LDF, DWORK( IQ2 ), SDIM,
     $                      F( IB1, IB1 ), LDF, DWORK( IWRK2 ),
     $                      LDWORK-IWRK2+1, INFO )
               CALL DSCAL( SDIM, HALF, F( IB1, IB1 ), LDF+1 )
C
               IF( LCMPQ ) THEN
C
C                 Update Q.
C
                  CALL DGEMM(  'No Transpose', 'No Transpose', UPDS,
     $                         SDIM, SDIM, ONE, Q( 1, IB1 ), LDQ,
     $                         DWORK( IQ1 ), SDIM, ZERO, DWORK( IWRK2 ),
     $                         UPDS )
                  CALL DLACPY( 'Full', UPDS, SDIM, DWORK( IWRK2 ), UPDS,
     $                         Q( 1, IB1 ), LDQ )
                  CALL DGEMM(  'No Transpose', 'No Transpose', UPDS,
     $                         SDIM, SDIM, ONE, Q( IUPD, M+IB1 ), LDQ,
     $                         DWORK( IQ2 ), SDIM, ZERO, DWORK( IWRK2 ),
     $                         UPDS )
                  CALL DLACPY( 'Full', UPDS, SDIM, DWORK( IWRK2 ), UPDS,
     $                         Q( IUPD, M+IB1 ), LDQ )
               END IF
C
C              Update index list IWORK(1:M) if a 1-by-1 and 2-by-2 block
C              have been swapped. IWORK(M+2:N+1) is not needed anymore,
C              so it is not necessary to update it.
C
               HLP = DIM2 - DIM1
               IF( HLP.EQ.1 ) THEN
C
C                 First block was 2-by-2.
C
                  IWORK( J+1 ) = IB1 + 1
               ELSE IF( HLP.EQ.-1 ) THEN
C
C                 Second block was 2-by-2.
C
                  IWORK( J+1 ) = IB1 + 2
               END IF
   50       CONTINUE
            MP = MP - 1
         END IF
         K = K - 1
      GO TO 40
C
C     END WHILE 40
C
      END IF
C
C     STEP 2: Reorder the remaining eigenvalues with negative real parts.
C
C     Set pointers for the inputs and outputs of MB03HD.
C
      IQUPLE = 1
      IAUPLE = IQUPLE + 16
      IBUPLE = IAUPLE +  8
      IWRK5  = IBUPLE +  8
      IWRK3  = IAUPLE
      IWRK4  = IWRK3  + 2*N
      ITMP1  = IWRK3  + N
      ITMP2  = ITMP1  + 4
      ITMP3  = ITMP2  + 4
C
      DO 70 K = R, MP, -1
C
C        I. Exchange the eigenvalues between two diagonal blocks.
C
         IR   = IWORK( R )
         DIM1 = IWORK( R+1 ) - IR
         SDIM = 2*DIM1
C
         IF( DIM1.EQ.2 ) THEN
            A( M, IR ) = ZERO
C
C           Build the (small) full skew-symmetric matrix D(M-1:M,M-1:M)
C           and the (small) symmetric matrix F(M-1:M,M-1:M).
C
            D( IR, IR ) =  ZERO
            D(  M, IR ) = -D( IR, M )
            D(  M,  M ) =  ZERO
            F(  M, IR ) =  F( IR, M )
         END IF
C
C        Calculate position of submatrices in DWORK.
C
         IBUPRI = IBUPLE + DIM1*DIM1
         IQLOLE = IQUPLE + DIM1
         IQUPRI = IQUPLE + DIM1*SDIM
         IQLORI = IQUPRI + DIM1
C
C        Generate input matrices for MB03HD built of submatrices of A,
C        D, B, and F.
C
         IF( DIM1.EQ.2 ) THEN
            CALL DLACPY( 'Upper', DIM1, DIM1, A( IR, IR ), LDA,
     $                   DWORK( IAUPLE ), DIM1 )
            DWORK( IAUPLE+6 ) = D( IR, IR+1 )
            CALL DLACPY( 'Full', DIM1, DIM1, B( IR, IR ), LDB,
     $                   DWORK( IBUPLE ), DIM1 )
            CALL DLACPY( 'Upper', DIM1, DIM1, F( IR, IR ), LDF,
     $                   DWORK( IBUPRI ), DIM1 )
         ELSE
            DWORK( IBUPLE ) = B( IR, IR )
            DWORK( IBUPRI ) = F( IR, IR )
         END IF
C
C        Perform eigenvalue exchange.
C        Workspace: IWRK5 + 23, if SDIM = 4.
C
         CALL MB03HD( SDIM, DWORK( IAUPLE ), DIM1, DWORK( IBUPLE ),
     $                DIM1, PAR, DWORK( IQUPLE ), SDIM, DWORK( IWRK5 ),
     $                INFO )
         IF( INFO.GT.0 ) THEN
            INFO = 2
            RETURN
         END IF
C
         IF( DIM1.EQ.2 ) THEN
C
C           Update A by transformations from the right.
C           Workspace: IWRK3 + N - 1.
C
            CALL DLACPY( 'Full', M, DIM1, A( 1, IR ), LDA,
     $                   DWORK( IWRK3 ), M )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, DWORK( IWRK3 ), M, DWORK( IQUPLE ), SDIM,
     $                   ZERO, A( 1, IR ), LDA )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, D( 1, IR ), LDD, DWORK( IQLOLE ), SDIM,
     $                   ONE, A( 1, IR ), LDA )
C
C           Update D by transformations from the right.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, DWORK( IWRK3 ), M, DWORK( IQUPRI ), SDIM,
     $                   ZERO, DWORK( ITMP1 ), M )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, D( 1, IR ), LDD, DWORK( IQLORI ), SDIM,
     $                   ONE, DWORK( ITMP1 ), M )
            CALL DLACPY( 'Full', M, DIM1, DWORK( ITMP1 ), M, D( 1, IR ),
     $                   LDD )
C
C           Compute the intermediate product Af'*Q21 and the second
C           column of Af'*Q22, with Af = A(M-1:M,M-1:M).
C
            CALL DGEMM( 'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                  ONE, DWORK( IWRK3+M-DIM1 ), M, DWORK( IQLOLE ),
     $                  SDIM, ZERO, DWORK( ITMP1 ), DIM1 )
            CALL DGEMV( 'Transpose', DIM1, DIM1, ONE,
     $                  DWORK( IWRK3+M-DIM1 ), M, DWORK( IQLORI+SDIM ),
     $                  1, ZERO, DWORK( ITMP2 ), 1 )
C
C           Update A by transformations from the left.
C
            CALL DLACPY( 'Full', DIM1, DIM1, A( IR, IR ), LDA,
     $                   DWORK( IWRK3 ), DIM1 )
            CALL DGEMM(  'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                   -ONE, DWORK( IQUPRI ), SDIM, DWORK( ITMP1 ),
     $                   DIM1, ZERO, A( IR, IR ), LDA )
            CALL DGEMM(  'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                   ONE, DWORK( IQLORI ), SDIM, DWORK( IWRK3 ),
     $                   DIM1, ONE, A( IR, IR ), LDA )
C
C           Update D by transformations from the left.
C
            D( IR, M ) = DDOT( DIM1, DWORK( IQLORI ), 1, D( IR, M ), 1 )
     $                 - DDOT( DIM1, DWORK( IQUPRI ), 1, DWORK( ITMP2 ),
     $                         1 )
C
C           Update B by transformations from the right.
C
            CALL DLACPY( 'Full', M, DIM1, B( 1, IR ), LDB,
     $                   DWORK( IWRK3 ), M )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, DWORK( IWRK3 ), M, DWORK( IQUPLE ), SDIM,
     $                   ZERO, B( 1, IR ), LDB )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, F( 1, IR ), LDF, DWORK( IQLOLE ), SDIM,
     $                   ONE, B( 1, IR ), LDB )
C
C           Update F by transformations from the right.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, DWORK( IWRK3 ), M, DWORK( IQUPRI ), SDIM,
     $                   ZERO, DWORK( ITMP1 ), M )
            CALL DGEMM(  'No Transpose', 'No Transpose', M, DIM1, DIM1,
     $                   ONE, F( 1, IR ), LDF, DWORK( IQLORI ), SDIM,
     $                   ONE, DWORK( ITMP1 ), M )
            CALL DLACPY( 'Full', M, DIM1, DWORK( ITMP1 ), M, F( 1, IR ),
     $                   LDF )
C
C           Compute intermediate products Bf'*Q21 and Bf'*Q22, with
C           Bf = B(M-1:M,M-1:M).
C
            CALL DGEMM( 'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                  ONE, DWORK( IWRK3+M-DIM1 ), M, DWORK( IQLOLE ),
     $                  SDIM, ZERO, DWORK( ITMP1 ), DIM1 )
C
            CALL DGEMM( 'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                  ONE, DWORK( IWRK3+M-DIM1 ), M, DWORK( IQLORI ),
     $                  SDIM, ZERO, DWORK( ITMP2 ), DIM1 )
C
C           Update B by transformations from the left.
C
            CALL DLACPY( 'Full', DIM1, DIM1, B( IR, IR ), LDB,
     $                   DWORK( ITMP3 ), DIM1 )
            CALL DGEMM(  'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                   ONE, DWORK( IQUPRI ), SDIM, DWORK( ITMP1 ),
     $                   DIM1, ZERO, B( IR, IR ), LDB )
            CALL DGEMM(  'Transpose', 'No Transpose', DIM1, DIM1, DIM1,
     $                   ONE, DWORK( IQLORI ), SDIM, DWORK( ITMP3 ),
     $                   DIM1, ONE, B( IR, IR ), LDB )
C
C           Update F by transformations from the left.
C
            CALL MB01RX( 'Left', 'Upper', 'Transpose', DIM1, DIM1, ZERO,
     $                   ONE, DWORK( ITMP1 ), DIM1, DWORK( IQLORI ),
     $                   SDIM, F( IR, IR ), LDF, INFO )
            CALL MB01RX( 'Left', 'Upper', 'Transpose', DIM1, DIM1, ONE,
     $                   ONE, DWORK( ITMP1 ), DIM1, DWORK( IQUPRI ),
     $                   SDIM, DWORK( ITMP2 ), DIM1, INFO )
            CALL DLACPY( 'Upper', DIM1, DIM1, DWORK( ITMP1 ), DIM1,
     $                   F( IR, IR ), LDF )
C
            IF( LCMPQ ) THEN
C
C              Update Q.
C              Workspace: IWRK4 + 2*N - 1.
C
               CALL DLACPY( 'Full', N, DIM1, Q( 1, IR ), LDQ,
     $                      DWORK( IWRK4 ), N )
               CALL DGEMM(  'No Transpose', 'No Transpose', N, DIM1,
     $                      DIM1, ONE, DWORK( IWRK4 ), N,
     $                      DWORK( IQUPLE ), SDIM, ZERO, Q( 1, IR ),
     $                      LDQ )
               CALL DGEMM(  'No Transpose', 'No Transpose', N, DIM1,
     $                      DIM1, ONE, Q( 1, M+IR ), LDQ,
     $                      DWORK( IQLOLE ), SDIM, ONE, Q( 1, IR ),
     $                      LDQ )
               CALL DGEMM(  'No Transpose', 'No Transpose', N, DIM1,
     $                      DIM1, ONE, DWORK( IWRK4 ), N,
     $                      DWORK( IQUPRI ), SDIM, ZERO, DWORK( IWRK3 ),
     $                      N )
               CALL DGEMM(  'No Transpose', 'No Transpose', N, DIM1,
     $                      DIM1, ONE, Q( 1, M+IR ), LDQ,
     $                      DWORK( IQLORI ), SDIM, ONE, DWORK( IWRK3 ),
     $                      N )
               CALL DLACPY( 'Full', N, DIM1, DWORK( IWRK3 ), N,
     $                      Q( 1, M+IR ), LDQ )
            END IF
         ELSE
            Q11 = DWORK( IQUPLE )
            Q21 = DWORK( IQLOLE )
            Q12 = DWORK( IQUPRI )
            Q22 = DWORK( IQLORI )
C
C           Update A by transformations from the right.
C
            CALL DCOPY( M-1, A( 1, IR ), 1, DWORK( IWRK3 ), 1 )
            CALL DSCAL( M-1, Q11, A( 1, IR ), 1 )
            CALL DAXPY( M-1, Q21, D( 1, IR ), 1, A( 1, IR ), 1 )
C
C           Update D by transformations from the right.
C
            CALL DSCAL( M-1, Q22, D( 1, IR ), 1 )
            CALL DAXPY( M-1, Q12, DWORK( IWRK3 ), 1, D( 1, IR ), 1 )
C
C           Update B by transformations from the right.
C
            CALL DCOPY( M-1, B( 1, IR ), 1, DWORK( IWRK3 ), 1 )
            CALL DSCAL( M-1, Q11, B( 1, IR ), 1 )
            CALL DAXPY( M-1, Q21, F( 1, IR ), 1, B( 1, IR ), 1 )
C
C           Update F by transformations from the right.
C
            CALL DSCAL( M-1, Q22, F( 1, IR ), 1 )
            CALL DAXPY( M-1, Q12, DWORK( IWRK3 ), 1, F( 1, IR ), 1 )
C
C           Update B by transformations from the left.
C
            B( M, M ) = -B( M, M )
C
            IF( LCMPQ ) THEN
C
C              Update Q.
C
               CALL DCOPY( N, Q( 1, IR ), 1, DWORK( IWRK4 ), 1 )
               CALL DSCAL( N, Q11, Q( 1, IR ), 1 )
               CALL DAXPY( N, Q21, Q( 1, IR+M ), 1, Q( 1, IR ), 1 )
               CALL DSCAL( N, Q22, Q( 1, IR+M ), 1 )
               CALL DAXPY( N, Q12, DWORK( IWRK4 ), 1, Q( 1, IR+M ), 1 )
            END IF
C
         END IF
C
         MM = MM + 1
         DO 60 J = R - 1, MM, -1
            IB1  = IWORK( J )
            IB2  = IWORK( J+1 )
            IB3  = IWORK( J+2 )
            DIM1 = IB2  - IB1
            DIM2 = IB3  - IB2
            SDIM = DIM1 + DIM2
C
C           Copy the relevant part of A(ib1:ib3-1,ib1:ib3-1) and
C           B(ib1:ib3-1,ib1:ib3-1) to DWORK as inputs for MB03DD.
C           Also, set the additional zero elements.
C
            CALL DLACPY( 'Upper', SDIM, SDIM, A( IB1, IB1 ), LDA,
     $                   DWORK( IA ), SDIM )
            CALL DLASET( 'Lower', SDIM-1, SDIM-1, ZERO, ZERO,
     $                   DWORK( IA+1 ), SDIM )
            CALL DLACPY( 'Upper', SDIM, SDIM, B( IB1, IB1 ), LDB,
     $                   DWORK( IB ), SDIM )
            CALL DCOPY(  SDIM-1, B( IB1+1, IB1 ), LDB+1, DWORK( IB+1 ),
     $                   SDIM+1 )
            CALL DLASET( 'Lower', SDIM-2, SDIM-2, ZERO, ZERO,
     $                   DWORK( IB+2 ), SDIM )
C
C           Perform eigenvalue/matrix block exchange.
C
            CALL MB03DD( 'Triangular', DIM1, DIM2, PREC, DWORK( IB ),
     $                   SDIM, DWORK( IA ), SDIM, DWORK( IQ1 ), SDIM,
     $                   DWORK( IQ2 ), SDIM, DWORK( IWRK1 ),
     $                   LDWORK-IWRK1+1, INFO )
            IF( INFO.GT.0 ) THEN
               INFO = 1
               RETURN
            END IF
C
C           Copy the transformed diagonal blocks, if sdim > 2.
C
            NROWS = IB1 - 1
            NCOLS = M - IB3 + 1
            ICS   = IB3
            IF( SDIM.GT.2 ) THEN
               CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IA ), SDIM,
     $                      A( IB1, IB1 ), LDA )
               CALL DLACPY( 'Upper', SDIM, SDIM, DWORK( IB ), SDIM,
     $                      B( IB1, IB1 ), LDB )
               CALL DCOPY(  SDIM-1, DWORK( IB+1 ), SDIM+1,
     $                      B( IB1+1, IB1 ), LDB+1 )
               NROW = NROWS
               NCOL = NCOLS
               IC   = ICS
               LDW  = MAX( 1, NROW )
            ELSE
               TMP = A( IB1+1, IB1 )
               A( IB1+1, IB1 ) = ZERO
               NROW = IB3 - 1
               NCOL = M - IB1 + 1
               IC   = IB1
               LDW  = NROW
            END IF
C
C           Update A.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                   SDIM, ONE, A( 1, IB1 ), LDA, DWORK( IQ1 ),
     $                   SDIM, ZERO, DWORK( IWRK2 ), LDW )
            CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                   A( 1, IB1 ), LDA )
            CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                   SDIM, ONE, DWORK( IQ2 ), SDIM, A( IB1, IC ),
     $                   LDA, ZERO, DWORK( IWRK2 ), SDIM )
            CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                   A( IB1, IC ), LDA )
            IF( SDIM.EQ.2 )
     $         A( IB1+1, IB1 ) = TMP
C
C           Update D.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                   SDIM, ONE, D( 1, IB1 ), LDD, DWORK( IQ2 ),
     $                   SDIM, ZERO, DWORK( IWRK2 ), LDW )
            CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                   D( 1, IB1 ), LDD )
            CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                   SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                   D( IB1, ICS ), LDD, ZERO, DWORK( IWRK2 ),
     $                   SDIM )
            CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                   D( IB1, ICS ), LDD )
            CALL MB01LD( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                   D( IB1, IB1 ), LDD, DWORK( IQ2 ), SDIM,
     $                   D( IB1, IB1 ), LDD, DWORK( IWRK2 ),
     $                   LDWORK-IWRK2+1, INFO )
C
C           Update B.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', NROW, SDIM,
     $                   SDIM, ONE, B( 1, IB1 ), LDB, DWORK( IQ1 ),
     $                   SDIM, ZERO, DWORK( IWRK2 ), LDW )
            CALL DLACPY( 'Full', NROW, SDIM, DWORK( IWRK2 ), LDW,
     $                   B( 1, IB1 ), LDB )
            CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOL,
     $                   SDIM, ONE, DWORK( IQ2 ), SDIM, B( IB1, IC ),
     $                   LDB, ZERO, DWORK( IWRK2 ), SDIM )
            CALL DLACPY( 'Full', SDIM, NCOL, DWORK( IWRK2 ), SDIM,
     $                   B( IB1, IC ), LDB )
C
C           Update F.
C
            CALL DGEMM(  'No Transpose', 'No Transpose', NROWS, SDIM,
     $                   SDIM, ONE, F( 1, IB1 ), LDF, DWORK( IQ2 ),
     $                   SDIM, ZERO, DWORK( IWRK2 ), LDW )
            CALL DLACPY( 'Full', NROWS, SDIM, DWORK( IWRK2 ), LDW,
     $                   F( 1, IB1 ), LDF )
            CALL DGEMM(  'Transpose', 'No Transpose', SDIM, NCOLS,
     $                   SDIM, ONE, DWORK( IQ2 ), SDIM,
     $                   F( IB1, ICS ), LDF, ZERO, DWORK( IWRK2 ),
     $                   SDIM )
            CALL DLACPY( 'Full', SDIM, NCOLS, DWORK( IWRK2 ), SDIM,
     $                   F( IB1, ICS ), LDF )
            CALL MB01RU( 'Upper', 'Transpose', SDIM, SDIM, ZERO, ONE,
     $                   F( IB1, IB1 ), LDF, DWORK( IQ2 ), SDIM,
     $                   F( IB1, IB1 ), LDF, DWORK( IWRK2 ),
     $                   LDWORK-IWRK2+1, INFO )
            CALL DSCAL( SDIM, HALF, F( IB1, IB1 ), LDF+1 )
C
            IF( LCMPQ ) THEN
C
C              Update Q.
C              Workspace: IWRK2 + 4*N - 1.
C
               CALL DGEMM(  'No Transpose', 'No Transpose', N, SDIM,
     $                      SDIM, ONE, Q( 1, IB1 ), LDQ, DWORK( IQ1 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), N )
               CALL DLACPY( 'Full', N, SDIM, DWORK( IWRK2 ), N,
     $                      Q( 1, IB1 ), LDQ )
               CALL DGEMM(  'No Transpose', 'No Transpose', N, SDIM,
     $                      SDIM, ONE, Q( 1, M+IB1 ), LDQ, DWORK( IQ2 ),
     $                      SDIM, ZERO, DWORK( IWRK2 ), N )
               CALL DLACPY( 'Full', N, SDIM, DWORK( IWRK2 ), N,
     $                      Q( 1, M+IB1 ), LDQ )
            END IF
C
C           Update index list IWORK(1:M) if a 1-by-1 and 2-by-2 block
C           have been swapped.
C
            HLP = DIM2 - DIM1
            IF( HLP.EQ.1 ) THEN
C
C              First block was 2-by-2.
C
               IWORK( J+1 ) = IB1 + 1
C
            ELSE IF( HLP.EQ.-1 ) THEN
C
C              Second block was 2-by-2.
C
               IWORK( J+1 ) = IB1 + 2
            END IF
   60    CONTINUE
   70 CONTINUE
C
      IF( M.GT.1 ) THEN
C
C        Restore the lower triangle of the submatrix D(M-1:M,M-1:M) and
C        the elements A(M,M-1) and F(M,M-1).
C
         D( M-1, M-1 ) = D1
         D(   M, M-1 ) = D2
         D(   M,   M ) = D3
         A(   M, M-1 ) = A2
         F(   M, M-1 ) = F2
      END IF
C
      IF( MM.GT.0 ) THEN
         NEIG = IWORK( MM+1 ) - 1
      ELSE
         NEIG = 0
      END IF
C
      RETURN
C *** Last line of MB03JD ***
      END