control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
      SUBROUTINE AB09BX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
     $                   C, LDC, D, LDD, HSV, T, LDT, TI, LDTI, TOL1,
     $                   TOL2, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C     PURPOSE
C
C     To compute a reduced order model (Ar,Br,Cr,Dr) for a stable
C     original state-space representation (A,B,C,D) by using either the
C     square-root or the balancing-free square-root
C     Singular Perturbation Approximation (SPA) model reduction method.
C     The state dynamics matrix A of the original system is an upper
C     quasi-triangular matrix in real Schur canonical form. The matrices
C     of a minimal realization are computed using the truncation
C     formulas:
C
C          Am = TI * A * T ,  Bm = TI * B ,  Cm = C * T .      (1)
C
C     Am, Bm, Cm and D serve further for computing the SPA of the given
C     system.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOB     CHARACTER*1
C             Specifies the model reduction approach to be used
C             as follows:
C             = 'B':  use the square-root SPA method;
C             = 'N':  use the balancing-free square-root SPA method.
C
C     ORDSEL  CHARACTER*1
C             Specifies the order selection method as follows:
C             = 'F':  the resulting order NR is fixed;
C             = 'A':  the resulting order NR is automatically determined
C                     on basis of the given tolerance TOL1.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation, i.e.
C             the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NR      (input/output) INTEGER
C             On entry with ORDSEL = 'F', NR is the desired order of
C             the resulting reduced order system.  0 <= NR <= N.
C             On exit, if INFO = 0, NR is the order of the resulting
C             reduced order model. NR is set as follows:
C             if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
C             is the desired order on entry and NMIN is the order of a
C             minimal realization of the given system; NMIN is
C             determined as the number of Hankel singular values greater
C             than N*EPS*HNORM(A,B,C), where EPS is the machine
C             precision (see LAPACK Library Routine DLAMCH) and
C             HNORM(A,B,C) is the Hankel norm of the system (computed
C             in HSV(1));
C             if ORDSEL = 'A', NR is equal to the number of Hankel
C             singular values greater than MAX(TOL1,N*EPS*HNORM(A,B,C)).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A in a real Schur
C             canonical form.
C             On exit, if INFO = 0, the leading NR-by-NR part of this
C             array contains the state dynamics matrix Ar of the
C             reduced order system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, if INFO = 0, the leading NR-by-M part of this
C             array contains the input/state matrix Br of the reduced
C             order system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, if INFO = 0, the leading P-by-NR part of this
C             array contains the state/output matrix Cr of the reduced
C             order system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original input/output matrix D.
C             On exit, if INFO = 0, the leading P-by-M part of this
C             array contains the input/output matrix Dr of the reduced
C             order system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     HSV     (output) DOUBLE PRECISION array, dimension (N)
C             If INFO = 0, it contains the Hankel singular values of
C             the original system ordered decreasingly. HSV(1) is the
C             Hankel norm of the system.
C
C     T       (output) DOUBLE PRECISION array, dimension (LDT,N)
C             If INFO = 0 and NR > 0, the leading N-by-NR part of this
C             array contains the right truncation matrix T in (1).
C
C     LDT     INTEGER
C             The leading dimension of array T.  LDT >= MAX(1,N).
C
C     TI      (output) DOUBLE PRECISION array, dimension (LDTI,N)
C             If INFO = 0 and NR > 0, the leading NR-by-N part of this
C             array contains the left truncation matrix TI in (1).
C
C     LDTI    INTEGER
C             The leading dimension of array TI.  LDTI >= MAX(1,N).
C
C     Tolerances
C
C     TOL1    DOUBLE PRECISION
C             If ORDSEL = 'A', TOL1 contains the tolerance for
C             determining the order of reduced system.
C             For model reduction, the recommended value is
C             TOL1 = c*HNORM(A,B,C), where c is a constant in the
C             interval [0.00001,0.001], and HNORM(A,B,C) is the
C             Hankel-norm of the given system (computed in HSV(1)).
C             For computing a minimal realization, the recommended
C             value is TOL1 = N*EPS*HNORM(A,B,C), where EPS is the
C             machine precision (see LAPACK Library Routine DLAMCH).
C             This value is used by default if TOL1 <= 0 on entry.
C             If ORDSEL = 'F', the value of TOL1 is ignored.
C
C     TOL2    DOUBLE PRECISION
C             The tolerance for determining the order of a minimal
C             realization of the given system. The recommended value is
C             TOL2 = N*EPS*HNORM(A,B,C). This value is used by default
C             if TOL2 <= 0 on entry.
C             If TOL2 > 0, then TOL2 <= TOL1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (MAX(1,2*N))
C             On exit with INFO = 0, IWORK(1) contains the order of the
C             minimal realization of the system.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,N*(MAX(N,M,P)+5) + N*(N+1)/2).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  with ORDSEL = 'F', the selected order NR is greater
C                   than the order of a minimal realization of the
C                   given system. In this case, the resulting NR is
C                   set automatically to a value corresponding to the
C                   order of a minimal realization of the system.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the state matrix A is not stable (if DICO = 'C')
C                   or not convergent (if DICO = 'D');
C             = 2:  the computation of Hankel singular values failed.
C
C     METHOD
C
C     Let be the stable linear system
C
C          d[x(t)] = Ax(t) + Bu(t)
C          y(t)    = Cx(t) + Du(t)                              (2)
C
C     where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C     for a discrete-time system. The subroutine AB09BX determines for
C     the given system (1), the matrices of a reduced NR order system
C
C          d[z(t)] = Ar*z(t) + Br*u(t)
C          yr(t)   = Cr*z(t) + Dr*u(t)                          (3)
C
C     such that
C
C           HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C     where G and Gr are transfer-function matrices of the systems
C     (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, and INFNORM(G) is the
C     infinity-norm of G.
C
C     If JOB = 'B', the balancing-based square-root SPA method of [1]
C     is used and the resulting model is balanced.
C
C     If JOB = 'N', the balancing-free square-root SPA method of [2]
C     is used.
C     By setting TOL1 = TOL2, the routine can be also used to compute
C     Balance & Truncate approximations.
C
C     REFERENCES
C
C     [1] Liu Y. and Anderson B.D.O.
C         Singular Perturbation Approximation of Balanced Systems,
C         Int. J. Control, Vol. 50, pp. 1379-1405, 1989.
C
C     [2] Varga A.
C         Balancing-free square-root algorithm for computing singular
C         perturbation approximations.
C         Proc. 30-th IEEE CDC,  Brighton, Dec. 11-13, 1991,
C         Vol. 2, pp. 1062-1065.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on accuracy enhancing square-root or
C     balancing-free square-root techniques.
C                                         3
C     The algorithms require less than 30N  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, March 1998.
C     Based on the RASP routine SRBFP1.
C
C     REVISIONS
C
C     May 2, 1998.
C     November 11, 1998, V. Sima, Research Institute for Informatics,
C     Bucharest.
C     December 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C     February 14, 1999, A. Varga, German Aerospace Center.
C     February 22, 1999, V. Sima, Research Institute for Informatics.
C     February 27, 2000, V. Sima, Research Institute for Informatics.
C     May 26, 2000, A. Varga, German Aerospace Center.
C
C     KEYWORDS
C
C     Balancing, minimal state-space representation, model reduction,
C     multivariable system, singular perturbation approximation,
C     state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, JOB, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDT, LDTI,
     $                  LDWORK, M, N, NR, P
      DOUBLE PRECISION  TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), HSV(*), T(LDT,*), TI(LDTI,*)
C     .. Local Scalars ..
      LOGICAL           BAL, DISCR, FIXORD, PACKED
      INTEGER           IERR, IJ, J, K, KTAU, KU, KV, KW, LDW, NMINR,
     $                  NR1, NS, WRKOPT
      DOUBLE PRECISION  ATOL, RCOND, RTOL, SCALEC, SCALEO, TEMP
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB09DD, DGEMM, DGEMV, DGEQRF, DGETRF, DGETRS,
     $                  DLACPY, DORGQR, DSCAL, DTPMV, DTRMM, DTRMV,
     $                  MA02AD, MA02DD, MB03UD, SB03OU, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      INFO   = 0
      IWARN  = 0
      DISCR  = LSAME( DICO,   'D' )
      BAL    = LSAME( JOB,    'B' )
      FIXORD = LSAME( ORDSEL, 'F' )
C
C     Test the input scalar arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( BAL .OR. LSAME( JOB, 'N') ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
         INFO = -7
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDTI.LT.MAX( 1, N ) ) THEN
         INFO = -20
      ELSE IF( TOL2.GT.ZERO .AND. TOL2.GT.TOL1 ) THEN
         INFO = -22
      ELSE IF( LDWORK.LT.MAX( 1, N*( MAX( N, M, P ) + 5 ) +
     $                         ( N*( N + 1 ) )/2 ) ) THEN
         INFO = -25
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09BX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 ) THEN
         NR = 0
         IWORK(1) = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
      RTOL = DBLE( N )*DLAMCH( 'Epsilon' )
C
C     Allocate N*MAX(N,M,P) and N working storage for the matrices U
C     and TAU, respectively.
C
      KU   = 1
      KTAU = KU + N*MAX( N, M, P )
      KW   = KTAU + N
      LDW  = LDWORK - KW + 1
C
C     Copy B in U.
C
      CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
C
C     If DISCR = .FALSE., solve for Su the Lyapunov equation
C                                      2
C     A*(Su*Su') + (Su*Su')*A' + scalec *B*B' = 0 .
C
C     If DISCR = .TRUE., solve for Su the Lyapunov equation
C                           2
C     A*(Su*Su')*A' + scalec *B*B' = Su*Su' .
C
C     Workspace:  need   N*(MAX(N,M,P) + 5);
C                 prefer larger.
C
      CALL SB03OU( DISCR, .TRUE., N, M, A, LDA, DWORK(KU), N,
     $             DWORK(KTAU), TI, LDTI, SCALEC, DWORK(KW), LDW, IERR )
      IF( IERR.NE.0 ) THEN
         INFO = 1
         RETURN
      ENDIF
      WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C     Copy C in U.
C
      CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
C
C     If DISCR = .FALSE., solve for Ru the Lyapunov equation
C                                      2
C     A'*(Ru'*Ru) + (Ru'*Ru)*A + scaleo  * C'*C = 0 .
C
C     If DISCR = .TRUE., solve for Ru the Lyapunov equation
C                           2
C     A'*(Ru'*Ru)*A + scaleo  * C'*C = Ru'*Ru .
C
C     Workspace:  need   N*(MAX(N,M,P) + 5);
C                 prefer larger.
C
      CALL SB03OU( DISCR, .FALSE., N, P, A, LDA, DWORK(KU), P,
     $             DWORK(KTAU), T, LDT, SCALEO, DWORK(KW), LDW, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Allocate N*(N+1)/2 (or, if possible, N*N) working storage for the
C     matrix V, a packed (or unpacked) copy of Su, and save Su in V.
C     (The locations for TAU are reused here.)
C
      KV = KTAU
      IF ( LDWORK-KV+1.LT.N*( N + 5 ) ) THEN
         PACKED = .TRUE.
         CALL MA02DD( 'Pack', 'Upper', N, TI, LDTI, DWORK(KV) )
         KW = KV + ( N*( N + 1 ) )/2
      ELSE
         PACKED = .FALSE.
         CALL DLACPY( 'Upper', N, N, TI, LDTI, DWORK(KV), N )
         KW = KV + N*N
      END IF
C                               | x x |
C     Compute Ru*Su in the form | 0 x | in TI.
C
      DO 10 J = 1, N
         CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', J, T, LDT,
     $               TI(1,J), 1 )
   10 CONTINUE
C
C     Compute the singular value decomposition Ru*Su = V*S*UT
C     of the upper triangular matrix Ru*Su, with UT in TI and V in U.
C
C     Workspace:  need   N*MAX(N,M,P) + N*(N+1)/2 + 5*N;
C                 prefer larger.
C
      CALL MB03UD( 'Vectors', 'Vectors', N, TI, LDTI, DWORK(KU), N, HSV,
     $             DWORK(KW), LDWORK-KW+1, IERR )
      IF( IERR.NE.0 ) THEN
         INFO = 2
         RETURN
      ENDIF
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Scale singular values.
C
      CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
C
C     Partition S, U and V conformally as:
C
C     S = diag(S1,S2,S3),  U = [U1,U2,U3] (U' in TI) and V = [V1,V2,V3]
C     (in U).
C
C     Compute the order NR of reduced system, as the order of S1.
C
      ATOL = RTOL*HSV(1)
      IF( FIXORD ) THEN
         IF( NR.GT.0 ) THEN
            IF( HSV(NR).LE.ATOL ) THEN
               NR = 0
               IWARN = 1
               FIXORD = .FALSE.
            ENDIF
         ENDIF
      ELSE
         ATOL = MAX( TOL1, ATOL )
         NR = 0
      ENDIF
      IF( .NOT.FIXORD ) THEN
         DO 20 J = 1, N
            IF( HSV(J).LE.ATOL ) GO TO 30
            NR = NR + 1
   20    CONTINUE
   30    CONTINUE
      ENDIF
C
C     Finish if the order of the reduced model is zero.
C
      IF( NR.EQ.0 ) THEN
C
C       Compute only Dr using singular perturbation formulas.
C       Workspace:  need real    4*N;
C                   need integer 2*N.
C
         CALL AB09DD( DICO, N, M, P, NR, A, LDA, B, LDB, C, LDC, D,
     $                LDD, RCOND, IWORK, DWORK, IERR )
         IWORK(1) = 0
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Compute the order of minimal realization as the order of [S1 S2].
C
      NR1 = NR + 1
      NMINR = NR
      IF( NR.LT.N ) THEN
         ATOL = MAX( TOL2, RTOL*HSV(1) )
         DO 40 J = NR1, N
            IF( HSV(J).LE.ATOL ) GO TO 50
            NMINR = NMINR + 1
   40    CONTINUE
   50    CONTINUE
      END IF
C
C     Compute the order of S2.
C
      NS = NMINR - NR
C
C     Compute the truncation matrices.
C
C     Compute TI' = | TI1' TI2' | = Ru'*| V1 V2 | in U.
C
      CALL DTRMM( 'Left', 'Upper', 'Transpose', 'NonUnit', N, NMINR,
     $            ONE, T, LDT, DWORK(KU), N )
C
C     Compute  T = | T1 T2 | = Su*| U1 U2 |
C     (with Su packed, if not enough workspace).
C
      CALL MA02AD( 'Full', NMINR, N, TI, LDTI, T, LDT )
      IF ( PACKED ) THEN
         DO 60 J = 1, NMINR
            CALL DTPMV( 'Upper', 'NoTranspose', 'NonUnit', N, DWORK(KV),
     $                  T(1,J), 1 )
   60    CONTINUE
      ELSE
         CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N,
     $               NMINR, ONE, DWORK(KV), N, T, LDT )
      END IF
C
      IF( BAL ) THEN
         IJ = KU
C
C        Square-Root SPA method.
C
C        Compute the truncation matrices for balancing
C                    -1/2            -1/2
C               T1*S1     and TI1'*S1
C
         DO 70 J = 1, NR
            TEMP = ONE/SQRT( HSV(J) )
            CALL DSCAL( N, TEMP, T(1,J), 1 )
            CALL DSCAL( N, TEMP, DWORK(IJ), 1 )
            IJ = IJ + N
   70    CONTINUE
      ELSE
C
C        Balancing-Free SPA method.
C
C        Compute orthogonal bases for the images of matrices T1 and
C        TI1'.
C
C        Workspace:  need   N*MAX(N,M,P) + 2*NR;
C                    prefer N*MAX(N,M,P) + NR*(NB+1)
C                           (NB determined by ILAENV for DGEQRF).
C
         KW  = KTAU + NR
         LDW = LDWORK - KW + 1
         CALL DGEQRF( N, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW, IERR )
         CALL DORGQR( N, NR, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW,
     $                IERR )
         CALL DGEQRF( N, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW), LDW,
     $                IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
         CALL DORGQR( N, NR, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW),
     $                LDW, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
      ENDIF
      IF( NS.GT.0 ) THEN
C
C        Compute orthogonal bases for the images of matrices T2 and
C        TI2'.
C
C        Workspace:  need   N*MAX(N,M,P) + 2*NS;
C                    prefer N*MAX(N,M,P) + NS*(NB+1)
C                           (NB determined by ILAENV for DGEQRF).
         KW  = KTAU + NS
         LDW = LDWORK - KW + 1
         CALL DGEQRF( N, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW), LDW,
     $                IERR )
         CALL DORGQR( N, NS, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW),
     $                LDW, IERR )
         CALL DGEQRF( N, NS, DWORK(KU+N*NR), N, DWORK(KTAU), DWORK(KW),
     $                LDW, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
         CALL DORGQR( N, NS, NS, DWORK(KU+N*NR), N, DWORK(KTAU),
     $                DWORK(KW), LDW, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
      ENDIF
C
C     Transpose TI' in TI.
C
      CALL MA02AD( 'Full', N, NMINR, DWORK(KU), N, TI, LDTI )
C
      IF( .NOT.BAL ) THEN
C                        -1
C        Compute (TI1*T1)  *TI1 in TI.
C
         CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE, TI,
     $               LDTI, T, LDT, ZERO, DWORK(KU), N )
         CALL DGETRF( NR, NR, DWORK(KU), N, IWORK, IERR )
         CALL DGETRS( 'NoTranspose', NR, N, DWORK(KU), N, IWORK, TI,
     $                LDTI, IERR )
C
         IF( NS.GT.0 ) THEN
C                           -1
C           Compute (TI2*T2)  *TI2 in TI2.
C
            CALL DGEMM( 'NoTranspose', 'NoTranspose', NS, NS, N, ONE,
     $                  TI(NR1,1), LDTI, T(1,NR1), LDT, ZERO, DWORK(KU),
     $                  N )
            CALL DGETRF( NS, NS, DWORK(KU), N, IWORK, IERR )
            CALL DGETRS( 'NoTranspose', NS, N, DWORK(KU), N, IWORK,
     $                   TI(NR1,1), LDTI, IERR )
         END IF
      END IF
C
C     Compute TI*A*T (A is in RSF).
C
      IJ = KU
      DO 80 J = 1, N
         K = MIN( J+1, N )
         CALL DGEMV( 'NoTranspose', NMINR, K, ONE, TI, LDTI, A(1,J), 1,
     $               ZERO, DWORK(IJ), 1 )
         IJ = IJ + N
   80 CONTINUE
      CALL DGEMM( 'NoTranspose', 'NoTranspose', NMINR, NMINR, N, ONE,
     $            DWORK(KU), N, T, LDT, ZERO, A, LDA )
C
C     Compute TI*B and C*T.
C
      CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
      CALL DGEMM( 'NoTranspose', 'NoTranspose', NMINR, M, N, ONE, TI,
     $            LDTI, DWORK(KU), N, ZERO, B, LDB )
C
      CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
      CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NMINR, N, ONE,
     $            DWORK(KU), P, T, LDT, ZERO, C, LDC )
C
C     Compute the singular perturbation approximation if possible.
C     Note that IERR = 1 on exit from AB09DD cannot appear here.
C
C     Workspace:  need real    4*(NMINR-NR);
C                 need integer 2*(NMINR-NR).
C
      CALL AB09DD( DICO, NMINR, M, P, NR, A, LDA, B, LDB, C, LDC, D,
     $             LDD, RCOND, IWORK, DWORK, IERR )
C
      IWORK(1) = NMINR
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of AB09BX ***
      END