control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
      SUBROUTINE MB03VW( COMPQ, QIND, TRIU, N, K, H, ILO, IHI, S, A,
     $                   LDA1, LDA2, Q, LDQ1, LDQ2, IWORK, LIWORK,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To reduce the generalized matrix product
C
C                  S(1)           S(2)                 S(K)
C          A(:,:,1)     * A(:,:,2)     * ... * A(:,:,K)
C
C     to upper Hessenberg-triangular form, where A is N-by-N-by-K and S
C     is the signature array with values 1 or -1. The H-th matrix of A
C     is reduced to upper Hessenberg form while the other matrices are
C     triangularized. Unblocked version.
C
C     If COMPQ = 'U' or COMPZ = 'I', then the orthogonal factors are
C     computed and stored in the array Q so that for S(I) = 1,
C                                                              T
C           Q(:,:,I)(in)   A(:,:,I)(in)   Q(:,:,MOD(I,K)+1)(in)
C                                                               T    (1)
C        =  Q(:,:,I)(out)  A(:,:,I)(out)  Q(:,:,MOD(I,K)+1)(out) ,
C
C     and for S(I) = -1,
C                                                              T
C           Q(:,:,MOD(I,K)+1)(in)   A(:,:,I)(in)   Q(:,:,I)(in)
C                                                               T    (2)
C        =  Q(:,:,MOD(I,K)+1)(out)  A(:,:,I)(out)  Q(:,:,I)(out) .
C
C     A partial generation of the orthogonal factors can be realized via
C     the array QIND.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             Specifies whether or not the orthogonal transformations
C             should be accumulated in the array Q, as follows:
C             = 'N': do not modify Q;
C             = 'U': modify (update) the array Q by the orthogonal
C                    transformations that are applied to the matrices in
C                    the array A to reduce them to periodic Hessenberg-
C                    triangular form;
C             = 'I': like COMPQ = 'U', except that each matrix in the
C                    array Q will be first initialized to the identity
C                    matrix;
C             = 'P': use the parameters as encoded in QIND.
C
C     QIND    INTEGER array, dimension (K)
C             If COMPQ = 'P', then this array describes the generation
C             of the orthogonal factors as follows:
C                If QIND(I) > 0, then the array Q(:,:,QIND(I)) is
C             modified by the transformations corresponding to the
C             i-th orthogonal factor in (1) and (2).
C                If QIND(I) < 0, then the array Q(:,:,-QIND(I)) is
C             initialized to the identity and modified by the
C             transformations corresponding to the i-th orthogonal
C             factor in (1) and (2).
C                If QIND(I) = 0, then the transformations corresponding
C             to the i-th orthogonal factor in (1), (2) are not applied.
C
C     TRIU    CHARACTER*1
C             Indicates how many matrices are reduced to upper
C             triangular form in the first stage of the algorithm,
C             as follows
C             = 'N':  only matrices with negative signature;
C             = 'A':  all possible N - 1 matrices.
C             The first choice minimizes the computational costs of the
C             algorithm, whereas the second is more cache efficient and
C             therefore faster on modern architectures.
C
C     Input/Output Parameters
C
C     N       (input)  INTEGER
C             The order of each factor in the array A.  N >= 0.
C
C     K       (input) INTEGER
C             The number of factors.  K >= 0.
C
C     H       (input/output) INTEGER
C             On entry, if H is in the interval [1,K] then the H-th
C             factor of A will be transformed to upper Hessenberg form.
C             Otherwise the most efficient H is chosen.
C             On exit, H indicates the factor of A which is in upper
C             Hessenberg form.
C
C     ILO     (input)  INTEGER
C     IHI     (input)  INTEGER
C             It is assumed that each factor in A is already upper
C             triangular in rows and columns 1:ILO-1 and IHI+1:N.
C             1 <= ILO <= IHI <= N, if N > 0;
C             ILO = 1 and IHI  = 0, if N = 0.
C             If ILO = IHI, all factors are upper triangular.
C
C     S       (input)  INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures of the factors. Each entry in S must be either
C             1 or -1.
C
C     A       (input/output) DOUBLE PRECISION array, dimension
C                            (LDA1,LDA2,K)
C             On entry, the leading N-by-N-by-K part of this array must
C             contain the factors of the general product to be reduced.
C             On exit, A(:,:,H) is overwritten by an upper Hessenberg
C             matrix and each A(:,:,I), for I not equal to H, is
C             overwritten by an upper triangular matrix.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.
C             LDA1 >= MAX(1,N).
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.
C             LDA2 >= MAX(1,N).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension
C                            (LDQ1,LDQ2,K)
C             On entry, if COMPQ = 'U', the leading N-by-N-by-K part
C             of this array must contain the initial orthogonal factors
C             as described in (1) and (2).
C             On entry, if COMPQ = 'P', only parts of the leading
C             N-by-N-by-K part of this array must contain some
C             orthogonal factors as described by the parameters QIND.
C             If COMPQ = 'I', this array should not be set on entry.
C             On exit, if COMPQ = 'U' or COMPQ = 'I', the leading
C             N-by-N-by-K part of this array contains the modified
C             orthogonal factors as described in (1) and (2).
C             On exit, if COMPQ = 'P', only parts of the leading
C             N-by-N-by-K part contain some modified orthogonal factors
C             as described by the parameters QIND.
C             This array is not referenced if COMPQ = 'N'.
C
C     LDQ1    INTEGER
C             The first leading dimension of the array Q.  LDQ1 >= 1,
C             and, if COMPQ <> 'N', LDQ1 >= MAX(1,N).
C
C     LDQ2    INTEGER
C             The second leading dimension of the array Q.  LDQ2 >= 1,
C             and, if COMPQ <> 'N', LDQ2 >= MAX(1,N).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             On exit, if  INFO = -17,  IWORK(1)  returns the needed
C             value of LIWORK.
C
C     LIWORK  INTEGER
C             The length of the array IWORK.  LIWORK >= MAX(1,3*K).
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C             On exit, if  INFO = -19,  DWORK(1)  returns the minimum
C             value of LIWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK. 
C             LDWORK >= 1, if MIN(N,K) = 0, or N = 1 or ILO = IHI;
C             LDWORK >= M+MAX(IHI,N-ILO+1)), otherwise, where
C                       M = IHI-ILO+1.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1  a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     CONTRIBUTOR
C
C     V. Sima, Feb. 2022.
C     Based on an unfinished version of the routine PGGHRD, developed by
C     D. Kressner, Technical Univ. Chemnitz, Germany, June 1998.
C
C     REVISIONS
C
C     V. Sima, Mar. 2022.
C
C     KEYWORDS
C
C     Eigenvalues, QZ algorithm, periodic QZ algorithm, orthogonal
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         COMPQ, TRIU
      INTEGER           H, IHI, ILO, INFO, K, LDA1, LDA2, LDQ1, LDQ2,
     $                  LDWORK, LIWORK, N
C     .. Array Arguments ..
      INTEGER           IWORK(*), QIND(*), S(*)
      DOUBLE PRECISION  A(LDA1,LDA2,*), DWORK(LDWORK), Q(LDQ1,LDQ2,*)
C     .. Local Scalars ..
      LOGICAL           ALLTRI, LCMPQ, LINDQ, LINIQ, LPARQ, LQUERY
      INTEGER           AIND, AINDP, I, I2, I3, IER, INDQ, IWRK, J, L,
     $                  LT, M, MAPA, MAPQ, MAXSET, MINWRK, OPTWRK, POS,
     $                  SMULT, UPIDX, WMAX
      DOUBLE PRECISION  ALPHA, TAU, TEMP
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(3)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEQRF, DGERQF, DLACPY, DLARF, DLARFG,
     $                  DLARTG, DLASET, DORGQR, DORMQR, DORMRQ, DROT,
     $                  MB03BA, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, INT, MAX, MIN
C
C     .. Executable Statements ..
C
      INFO   = 0
      LINIQ  = LSAME( COMPQ, 'I' )
      LCMPQ  = LSAME( COMPQ, 'U' ) .OR. LINIQ
      LPARQ  = LSAME( COMPQ, 'P' )
      ALLTRI = LSAME( TRIU,  'A' )
      LQUERY = LDWORK.EQ.-1
C
C     Test the input scalar arguments.
C
      IF ( .NOT.LCMPQ .AND. .NOT.LPARQ .AND. .NOT.LSAME( COMPQ, 'N' ) )
     $      THEN
         INFO = -1
      ELSE IF ( .NOT.ALLTRI .AND. .NOT.LSAME( TRIU, 'N') ) THEN
         INFO = -3
      ELSE IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( K.LT.0 ) THEN
         INFO = -5
      ELSE IF ( ILO.LT.1 ) THEN
         INFO = -7
      ELSE IF ( IHI.GT.N .OR. ( N.GT.0 .AND. IHI.LT.ILO ) .OR.
     $          IHI.LT.0 ) THEN
         INFO = -8
      ELSE IF ( LDA1.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF ( LDA2.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF ( LDQ1.LT.1 .OR. ( ( LCMPQ .OR. LPARQ )
     $                             .AND. LDQ1.LT.N ) ) THEN
         INFO = -14
      ELSE IF ( LDQ2.LT.1 .OR. ( ( LCMPQ .OR. LPARQ )
     $                             .AND. LDQ2.LT.N ) ) THEN
         INFO = -15
      ELSE IF ( LIWORK.LT.MAX( 1, 3*K ) ) THEN
         INFO = -17
         IWORK(1) = MAX( 1, 3*K )
      ELSE
         IF ( MIN( N, K ).EQ.0 .OR. N.EQ.1 .OR. ILO.EQ.IHI ) THEN
            MINWRK = 1
         ELSE
            M = IHI - ILO + 1
            MINWRK = M + MAX( IHI, N - ILO + 1 )
         END IF
         OPTWRK = MINWRK
         IF ( .NOT.LQUERY .AND. LDWORK.LT.MINWRK ) THEN
            INFO = -19
            DWORK(1) = MINWRK
         ELSE IF ( N.GT.2 ) THEN
            CALL DGEQRF( M, M, A, LDA1, DUM, DUM(1), -1, IER )
            CALL DGERQF( M, M, A, LDA1, DUM, DUM(2), -1, IER )
            OPTWRK = MAX( INT( DUM(1) ), INT( DUM(2) ) )
            IF ( IHI.LT.N ) THEN
               CALL DORMQR( 'Left', 'Trans', M, N-IHI, M, A, LDA1, DUM,
     $                      A, LDA1, DUM, -1, IER )
               OPTWRK = MAX( OPTWRK, INT( DUM(1) ) )
            END IF
            CALL DORMQR( 'Right', 'NoTran', IHI, M, M, A, LDA1, DUM, A,
     $                   LDA1, DUM, -1, IER )
            CALL DORMQR( 'Left', 'Trans', M, N-ILO+1, M, A, LDA1, DUM,
     $                   A, LDA1, DUM(2), -1, IER )
            OPTWRK = MAX( OPTWRK, INT( DUM(1) ), INT( DUM(2) ) )
            CALL DORMRQ( 'Right', 'Trans', IHI, M, M, A, LDA1, DUM, A,
     $                   LDA1, DUM, -1, IER )
            CALL DORMRQ( 'Left', 'NoTran', M, N-ILO+1, M, A, LDA1, DUM,
     $                   A, LDA1, DUM(2), -1, IER )
            OPTWRK = MAX( OPTWRK, INT( DUM(1) ), INT( DUM(2) ) )
            IF ( LINIQ ) THEN
               CALL DORGQR( M, M, M, Q, LDQ1, DUM, DUM, -1, IER )
               OPTWRK = MAX( OPTWRK, INT( DUM(1) ) )
            END IF
            OPTWRK = MAX( MINWRK, M + OPTWRK )
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB03VW', -INFO )
         RETURN
      ELSE IF ( LQUERY ) THEN
         DWORK(1) = OPTWRK
         RETURN
      END IF
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine.)
C
C     Set H, if not in the proper interval.
C
      IF ( K.EQ.0 ) THEN
         H = 0
      ELSE IF ( H.LT.1 .OR. H.GT.K ) THEN
         H = 1
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( N, K ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Initialize Q, if needed.
C
      DO 10  I = 1, K
         J = 0
         IF ( LINIQ ) THEN
            J = I
         ELSE IF ( LPARQ ) THEN
            J = -QIND(I)
         END IF
         IF ( J.GT.0 )
     $      CALL DLASET( 'Full', N, N, ZERO, ONE, Q(1,1,J), LDQ1 )
   10 CONTINUE
C
C     If all factors are already upper triangular, return.
C
      IF ( ILO.EQ.IHI ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute maps for accessing A and Q.
C
      MAPA = K
      MAPQ = 2*K
      CALL MB03BA( K, H, S, SMULT, IWORK(MAPA+1), IWORK(MAPQ+1) )
C
C     Compute a certain subset of the set ( i : s(i) = smult ).
C
      DO 20  I = 1, K
         AIND = IWORK(MAPA+I)
         IF ( S(AIND).NE.SMULT ) THEN
            IWORK(AIND) = 0
         ELSE IF ( ALLTRI .AND. AIND.NE.H ) THEN
            IWORK(AIND) = 0
         ELSE
            IWORK(AIND) = 1
         END IF
   20 CONTINUE
C
C     Find the maximal element in this set.
C
      MAXSET = 0
C
      DO 30  I = K, 1, -1
         AIND = IWORK(MAPA+I)
         IF ( MAXSET.EQ.0 .AND. IWORK(AIND).EQ.1 )
     $      MAXSET = I
   30 CONTINUE
C
C     Transform all matrices which are not in the set to upper
C     triangular form.
C
      I2    = MIN( N, ILO+1 )
      I3    = MIN( N, IHI+1 )
      IWRK  = M + 1
      WMAX  = LDWORK - M
      LINDQ = .FALSE.
C
      DO 40  I = K, 1, -1
         AIND = IWORK(MAPA+I)
C
         IF ( IWORK(AIND).EQ.0 ) THEN
            INDQ = IWORK(MAPQ+I)
            IF ( LPARQ ) THEN
               INDQ  = ABS( QIND(INDQ) )
               LINDQ = INDQ.GT.0
            END IF
            AINDP = IWORK(MAPA+I-1)
C
            IF ( S(AIND).EQ.SMULT ) THEN
C
C              Do a QR Decomposition of A_AIND.
C
C              Workspace: need   2*M,  M = IHI - ILO + 1;
C                         prefer M + M*NB.
C
               CALL DGEQRF( M, M, A(ILO,ILO,AIND), LDA1, DWORK,
     $                      DWORK(IWRK), WMAX, IER )
C
C              Update the rows ILO:IHI in columns IHI+1:N of A_AIND.
C
C              Workspace: need   M +  N-IHI;
C                         prefer M + (N-IHI)*NB.
C
               IF ( IHI.LT.N )
     $            CALL DORMQR( 'Left', 'Trans', M, N-IHI, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         A(ILO,IHI+1,AIND), LDA1, DWORK(IWRK),
     $                         WMAX, IER )
C
C              Update A_AINDP.
C
C              Workspace: need   M + MAX( IHI, N-ILO+1 );
C                         prefer M + MAX( IHI, N-ILO+1 )*NB.
C
               IF ( S(AINDP).EQ.SMULT ) THEN
                  CALL DORMQR( 'Right', 'NoTran', IHI, M, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         A(1,ILO,AINDP),  LDA1, DWORK(IWRK), WMAX,
     $                         IER )
               ELSE
                  CALL DORMQR( 'Left', 'Trans', M, N-ILO+1, M,
     $                         A(ILO,ILO,AIND),  LDA1, DWORK,
     $                         A(ILO,ILO,AINDP), LDA1, DWORK(IWRK),
     $                         WMAX, IER )
               END IF
C
C              Update the transformation matrix.
C
               IF ( LINIQ ) THEN
C
C                 Workspace: need   2*M;
C                            prefer M + M*NB.
C
                  CALL DLASET( 'Full', N, ILO-1, ZERO, ONE, Q(1,1,INDQ),
     $                         LDQ1 )
                  CALL DLASET( 'Full', ILO-1, N-ILO+1, ZERO, ZERO,
     $                         Q(1,ILO,INDQ), LDQ1 )
                  CALL DLACPY( 'Lower', M-1, M-1, A(I2,ILO,AIND), LDA1,
     $                         Q(I2,ILO,INDQ), LDQ1 )
                  CALL DORGQR( M, M, M, Q(ILO,ILO,INDQ), LDQ1, DWORK,
     $                         DWORK(IWRK), WMAX, IER )
                  CALL DLASET( 'Full', N-IHI, IHI, ZERO, ZERO,
     $                         Q(I3,ILO,INDQ), LDQ1 )
                  CALL DLASET( 'Full', IHI, N-IHI, ZERO, ZERO,
     $                         Q(1,I3,INDQ), LDQ1 )
                  CALL DLASET( 'Full', N-IHI, N-IHI, ZERO, ONE,
     $                         Q(I3,I3,INDQ), LDQ1 )
               ELSE IF ( LCMPQ .OR. LINDQ ) THEN
C
C                 Workspace: need   M + IHI;
C                            prefer M + IHI*NB.
C
                  CALL DORMQR( 'Right', 'NoTran', IHI, M, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         Q(1,ILO,INDQ),   LDQ1, DWORK(IWRK), WMAX,
     $                         IER )
               END IF
C
            ELSE
C
C              Do an RQ Decomposition of A_AIND.
C
C              Workspace: need   2*M;
C                         prefer M + M*NB.
C
               CALL DGERQF( M, M, A(ILO,ILO,AIND), LDA1, DWORK,
     $                      DWORK(IWRK), WMAX, IER )
C
C              Update the rows 1:ILO-1 in columns ILO:IHI of A_AIND.
C
C              Workspace: need   M +  ILO - 1;
C                         prefer M + (ILO - 1)*NB.
C
               IF ( ILO.GT.1 )
     $            CALL DORMRQ( 'Right', 'Trans', ILO-1, M, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         A(1,ILO,AIND),   LDA1, DWORK(IWRK), WMAX,
     $                         IER )
C
C              Update A_AINDP.
C
C              Workspace: need   M + MAX( IHI, N-ILO+1 );
C                         prefer M + MAX( IHI, N-ILO+1 )*NB.
C
               IF ( S(AINDP).EQ.SMULT ) THEN
                  CALL DORMRQ( 'Right', 'Trans', IHI, M, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         A(1,ILO,AINDP),  LDA1, DWORK(IWRK), WMAX,
     $                         IER )
               ELSE
                  CALL DORMRQ( 'Left', 'NoTran', M, N-ILO+1, M,
     $                         A(ILO,ILO,AIND),  LDA1, DWORK,
     $                         A(ILO,ILO,AINDP), LDA1, DWORK(IWRK),
     $                         WMAX, IER )
               END IF
C
C	         Update the transformation matrix.
C
C              Workspace: need   M + IHI;
C                         prefer M + IHI*NB.
C
               IF ( LCMPQ .OR. LINDQ )
     $            CALL DORMRQ( 'Right', 'Trans', IHI, M, M,
     $                         A(ILO,ILO,AIND), LDA1, DWORK,
     $                         Q(1,ILO,INDQ),   LDQ1, DWORK(IWRK), WMAX,
     $                         IER )
            END IF
C
            CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, A(I2,ILO,AIND),
     $                   LDA1 )
         END IF
C
   40 CONTINUE
C
C     Reduce A_1 to upper Hessenberg form and the other matrices of the
C     set to upper triangular form.
C
      DUM(1) = ZERO
      LINDQ  = .FALSE.
C
      DO 120  J = ILO, IHI - 1
C
C        UPIDX denotes the last remaining nonzero element in the
C        j-th column.
C
         UPIDX = J
C
         DO 110  LT = K + MAXSET, MAXSET + 1, -1
            L = LT
            IF ( L.GT.K )
     $         L = L - K
            IF ( L.EQ.1 )
     $         UPIDX = J + 1
C
            IF ( UPIDX.LT.N ) THEN
               AIND = IWORK(MAPA+L)
               INDQ = IWORK(MAPQ+L)
               IF ( LPARQ ) THEN
                  INDQ  = ABS( QIND(INDQ) )
                  LINDQ = INDQ.GT.0
               END IF
               IF ( L.LE.1 ) THEN
                  AINDP = IWORK(MAPA+K)
               ELSE
                  AINDP = IWORK(MAPA+L-1)
               END IF
C
               IF ( IWORK(AIND).EQ.1 .AND. IWORK(AINDP).EQ.1 ) THEN
C
C                 Case 1: AIND and AINDP are in the set.
C                 Annihilate A(UPIDX+1:ihi,j,AIND) with Householder.
C
                  CALL DLARFG( IHI-UPIDX+1, A(UPIDX,J,AIND),
     $                         A(UPIDX+1,J,AIND), 1, TAU )
                  ALPHA = A(UPIDX,J,AIND)
                  A(UPIDX,J,AIND) = ONE
C
C                 Update the affected matrices.
C
C                 Workspace: need  MAX( N - ILO, IHI ), if COMPQ =  'N';
C                 Workspace: need  N,                   if COMPQ <> 'N'.
C
                  CALL DLARF( 'Left', IHI-UPIDX+1, N-J, A(UPIDX,J,AIND),
     $                        1, TAU, A(UPIDX,J+1,AIND), LDA1, DWORK )
                  CALL DLARF( 'Right', IHI, N-UPIDX+1, A(UPIDX,J,AIND),
     $                        1, TAU, A(1,UPIDX,AINDP), LDA1, DWORK )
                  IF ( LCMPQ .OR. LINDQ )
     $               CALL DLARF( 'Right', N, N-UPIDX+1, A(UPIDX,J,AIND),
     $                           1, TAU, Q(1,UPIDX,INDQ), LDQ1, DWORK )
                  A(UPIDX,J,AIND) = ALPHA
                  CALL DCOPY( IHI-UPIDX, DUM, 0, A(UPIDX+1,J,AIND), 1 )
C
               ELSE IF ( IWORK(AIND).EQ.1 ) THEN
                  POS = 1
C
C                 Case 2: AIND is in the set, but AINDP is not.
C                 Annihilate A(UPIDX+1:n,j,AIND) with Givens rotations.
C
C                 Workspace: need   2*(M - 1).
C
                  DO 50  I = IHI, UPIDX + 1, -1
                     TEMP = A(I-1,J,AIND)
                     CALL DLARTG( TEMP, A(I,J,AIND), DWORK(POS),
     $                            DWORK(POS+1), A(I-1,J,AIND) )
                     A(I,J,AIND) = ZERO
                     CALL DROT( N-J, A(I-1,J+1,AIND), LDA1,
     $                          A(I,J+1,AIND), LDA1, DWORK(POS),
     $                          DWORK(POS+1) )
                     POS = POS + 2
   50             CONTINUE
C
C                 Update the corresponding transformation matrix.
C
                  IF ( LCMPQ .OR. LINDQ ) THEN
                     POS = 1
C
                     DO 60  I = IHI, UPIDX + 1, -1
                        CALL DROT( N, Q(1,I-1,INDQ), 1, Q(1,I,INDQ), 1,
     $                             DWORK(POS), DWORK(POS+1) )
                        POS = POS + 2
   60                CONTINUE
C
                  END IF
C
               ELSE
C
C                 Case 3: Neither AIND nor AINDP are in the set.
C                 Propagate rotations over upper triangular matrices.
C
C                 Workspace: need   2*(M - 1).
C
                  POS = 1
                  IF ( S(AIND).EQ.SMULT ) THEN
C
                     DO 70  I = IHI, UPIDX + 1, -1
                        CALL DROT( I, A(1,I-1,AIND), 1, A(1,I,AIND), 1,
     $                             DWORK(POS), DWORK(POS+1) )
                        TEMP = A(I-1,I-1,AIND)
                        CALL DLARTG( TEMP, A(I,I-1,AIND), DWORK(POS),
     $                               DWORK(POS+1), A(I-1,I-1,AIND) )
                        A(I,I-1,AIND) = ZERO
                        CALL DROT( N-I+1, A(I-1,I,AIND), LDA1,
     $                             A(I,I,AIND), LDA1, DWORK(POS),
     $                             DWORK(POS+1) )
                        POS = POS + 2
   70                CONTINUE
C
                  ELSE
C
                     DO 80  I = IHI, UPIDX + 1, -1
                        CALL DROT( N-I+2, A(I-1,I-1,AIND), LDA1,
     $                             A(I,I-1,AIND), LDA1, DWORK(POS),
     $                             DWORK(POS+1) )
                        TEMP = A(I,I,AIND)
C
C                       Use a transposed rotation to get a unified
C                       treatment when applying the transformations.
C
                        CALL DLARTG( TEMP, -A(I,I-1,AIND), DWORK(POS),
     $                               DWORK(POS+1), A(I,I,AIND) )
                        A(I,I-1,AIND) = ZERO
                        CALL DROT( I-1, A(1,I-1,AIND), 1, A(1,I,AIND),
     $                             1, DWORK(POS), DWORK(POS+1) )
                        POS = POS + 2
   80                CONTINUE
C
                  END IF
C
C                 Update the corresponding transformation matrix.
C
                  IF ( LCMPQ .OR. LINDQ ) THEN
                     POS = 1
C
                     DO 90  I = IHI, UPIDX + 1, -1
                        CALL DROT( N, Q(1,I-1,INDQ), 1, Q(1,I,INDQ), 1,
     $                             DWORK(POS), DWORK(POS+1) )
                        POS = POS + 2
   90                CONTINUE
C
                  END IF
C
C                 If AINDP is in the set, then apply all rotations on
C                 this matrix.
C
                  IF ( IWORK(AINDP).EQ.1 ) THEN
                     POS = 1
C
                     DO 100  I = IHI, UPIDX + 1, -1
                        CALL DROT( IHI, A(1,I-1,AINDP), 1, A(1,I,AINDP),
     $                             1, DWORK(POS), DWORK(POS+1) )
                        POS = POS + 2
  100                CONTINUE
C
                  END IF
C
               END IF
C
            END IF
C
  110    CONTINUE
C
  120 CONTINUE
C
      DWORK(1) = OPTWRK
      RETURN
C *** Last line of MB03VW ***
      END