control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
      SUBROUTINE MB02ND( M, N, L, RANK, THETA, C, LDC, X, LDX, Q, INUL,
     $                   TOL, RELTOL, IWORK, DWORK, LDWORK, BWORK,
     $                   IWARN, INFO )
C
C     PURPOSE
C
C     To solve the Total Least Squares (TLS) problem using a Partial
C     Singular Value Decomposition (PSVD) approach.
C     The TLS problem assumes an overdetermined set of linear equations
C     AX = B, where both the data matrix A as well as the observation
C     matrix B are inaccurate. The routine also solves determined and
C     underdetermined sets of equations by computing the minimum norm
C     solution.
C     It is assumed that all preprocessing measures (scaling, coordinate
C     transformations, whitening, ... ) of the data have been performed
C     in advance.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows in the data matrix A and the
C             observation matrix B.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns in the data matrix A.  N >= 0.
C
C     L       (input) INTEGER
C             The number of columns in the observation matrix B.
C             L >= 0.
C
C     RANK    (input/output) INTEGER
C             On entry, if RANK < 0, then the rank of the TLS
C             approximation [A+DA|B+DB] (r say) is computed by the
C             routine.
C             Otherwise, RANK must specify the value of r.
C             RANK <= min(M,N).
C             On exit, if RANK < 0 on entry and INFO = 0, then RANK
C             contains the computed rank of the TLS approximation
C             [A+DA|B+DB].
C             Otherwise, the user-supplied value of RANK may be
C             changed by the routine on exit if the RANK-th and the
C             (RANK+1)-th singular values of C = [A|B] are considered
C             to be equal, or if the upper triangular matrix F (as
C             defined in METHOD) is (numerically) singular.
C
C     THETA   (input/output) DOUBLE PRECISION
C             On entry, if RANK < 0, then the rank of the TLS
C             approximation [A+DA|B+DB] is computed using THETA as
C             (min(M,N+L) - d), where d is the number of singular
C             values of [A|B] <= THETA. THETA >= 0.0.
C             Otherwise, THETA is an initial estimate (t say) for
C             computing a lower bound on the RANK largest singular
C             values of [A|B]. If THETA < 0.0 on entry however, then
C             t is computed by the routine.
C             On exit, if RANK >= 0 on entry, then THETA contains the
C             computed bound such that precisely RANK singular values
C             of C = [A|B] are greater than THETA + TOL.
C             Otherwise, THETA is unchanged.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N+L)
C             On entry, the leading M-by-(N+L) part of this array must
C             contain the matrices A and B. Specifically, the first N
C             columns must contain the data matrix A and the last L
C             columns the observation matrix B (right-hand sides).
C             On exit, if INFO = 0, the first N+L components of the
C             columns of this array whose index i corresponds with
C             INUL(i) = .TRUE., are the possibly transformed (N+L-RANK)
C             base vectors of the right singular subspace corresponding
C             to the singular values of C = [A|B] which are less than or
C             equal to THETA. Specifically, if L = 0, or if RANK = 0 and
C             IWARN <> 2, these vectors are indeed the base vectors
C             above. Otherwise, these vectors form the matrix V2,
C             transformed as described in Step 4 of the PTLS algorithm
C             (see METHOD). The TLS solution is computed from these
C             vectors. The other columns of array C contain no useful
C             information.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= max(1,M,N+L).
C
C     X       (output) DOUBLE PRECISION array, dimension (LDX,L)
C             If INFO = 0, the leading N-by-L part of this array
C             contains the solution X to the TLS problem specified by
C             A and B.
C
C     LDX     INTEGER
C             The leading dimension of array X.  LDX >= max(1,N).
C
C     Q       (output) DOUBLE PRECISION array, dimension
C             (max(1,2*min(M,N+L)-1))
C             This array contains the partially diagonalized bidiagonal
C             matrix J computed from C, at the moment that the desired
C             singular subspace has been found. Specifically, the
C             leading p = min(M,N+L) entries of Q contain the diagonal
C             elements q(1),q(2),...,q(p) and the entries Q(p+1),Q(p+2),
C             ...,Q(2*p-1) contain the superdiagonal elements e(1),e(2),
C             ...,e(p-1) of J.
C
C     INUL    (output) LOGICAL array, dimension (N+L)
C             The indices of the elements of this array with value
C             .TRUE. indicate the columns in C containing the base
C             vectors of the right singular subspace of C from which
C             the TLS solution has been computed.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             This parameter defines the multiplicity of singular values
C             by considering all singular values within an interval of
C             length TOL as coinciding. TOL is used in checking how many
C             singular values are less than or equal to THETA. Also in
C             computing an appropriate upper bound THETA by a bisection
C             method, TOL is used as a stopping criterion defining the
C             minimum (absolute) subinterval width. TOL is also taken
C             as an absolute tolerance for negligible elements in the
C             QR/QL iterations. If the user sets TOL to be less than or
C             equal to 0, then the tolerance is taken as specified in
C             SLICOT Library routine MB04YD document.
C
C     RELTOL  DOUBLE PRECISION
C             This parameter specifies the minimum relative width of an
C             interval. When an interval is narrower than TOL, or than
C             RELTOL times the larger (in magnitude) endpoint, then it
C             is considered to be sufficiently small and bisection has
C             converged. If the user sets RELTOL to be less than
C             BASE * EPS, where BASE is machine radix and EPS is machine
C             precision (see LAPACK Library routine DLAMCH), then the
C             tolerance is taken as BASE * EPS.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N+2*L)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK, and DWORK(2) returns the reciprocal of the
C             condition number of the matrix F.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK = max(2, max(M,N+L) + 2*min(M,N+L),
C                          min(M,N+L) + LW + max(6*(N+L)-5,
C                                                L*L+max(N+L,3*L)),
C             where
C             LW = (N+L)*(N+L-1)/2,  if M >= N+L,
C             LW = M*(N+L-(M-1)/2),  if M <  N+L.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     BWORK   LOGICAL array, dimension (N+L)
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warnings;
C             = 1:  if the rank of matrix C has been lowered because a
C                   singular value of multiplicity greater than 1 was
C                   found;
C             = 2:  if the rank of matrix C has been lowered because the
C                   upper triangular matrix F is (numerically) singular.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the maximum number of QR/QL iteration steps
C                   (30*MIN(M,N)) has been exceeded;
C             = 2:  if the computed rank of the TLS approximation
C                   [A+DA|B+DB] exceeds MIN(M,N). Try increasing the
C                   value of THETA or set the value of RANK to min(M,N).
C
C     METHOD
C
C     The method used is the Partial Total Least Squares (PTLS) approach
C     proposed by Van Huffel and Vandewalle [5].
C
C     Let C = [A|B] denote the matrix formed by adjoining the columns of
C     B to the columns of A on the right.
C
C     Total Least Squares (TLS) definition:
C     -------------------------------------
C
C       Given matrices A and B, find a matrix X satisfying
C
C            (A + DA) X = B + DB,
C
C       where A and DA are M-by-N matrices, B and DB are M-by-L matrices
C       and X is an N-by-L matrix.
C       The solution X must be such that the Frobenius norm of [DA|DB]
C       is a minimum and each column of B + DB is in the range of
C       A + DA. Whenever the solution is not unique, the routine singles
C       out the minimum norm solution X.
C
C     Let V denote the right singular subspace of C. Since the TLS
C     solution can be computed from any orthogonal basis of the subspace
C     of V corresponding to the smallest singular values of C, the
C     Partial Singular Value Decomposition (PSVD) can be used instead of
C     the classical SVD. The dimension of this subspace of V may be
C     determined by the rank of C or by an upper bound for those
C     smallest singular values.
C
C     The PTLS algorithm proceeds as follows (see [2 - 5]):
C
C     Step 1: Bidiagonalization phase
C             -----------------------
C      (a) If M is large enough than N + L, transform C into upper
C          triangular form R by Householder transformations.
C      (b) Transform C (or R) into upper bidiagonal form
C          (p = min(M,N+L)):
C
C                     |q(1) e(1)  0   ...  0   |
C                (0)  | 0   q(2) e(2)      .   |
C               J   = | .                  .   |
C                     | .                e(p-1)|
C                     | 0             ... q(p) |
C
C          if M >= N + L, or lower bidiagonal form:
C
C                     |q(1)  0    0   ...  0     0   |
C                (0)  |e(1) q(2)  0        .     .   |
C               J   = | .                  .     .   |
C                     | .                 q(p)   .   |
C                     | 0             ... e(p-1) q(p)|
C
C          if M < N + L, using Householder transformations.
C          In the second case, transform the matrix to the upper
C          bidiagonal form by applying Givens rotations.
C      (c) Initialize the right singular base matrix with the identity
C          matrix.
C
C     Step 2: Partial diagonalization phase
C             -----------------------------
C     If the upper bound THETA is not given, then compute THETA such
C     that precisely p - RANK singular values (p=min(M,N+L)) of the
C     bidiagonal matrix are less than or equal to THETA, using a
C     bisection method [5]. Diagonalize the given bidiagonal matrix J
C     partially, using either QL iterations (if the upper left diagonal
C     element of the considered bidiagonal submatrix is smaller than the
C     lower right diagonal element) or QR iterations, such that J is
C     split into unreduced bidiagonal submatrices whose singular values
C     are either all larger than THETA or are all less than or equal
C     to THETA. Accumulate the Givens rotations in V.
C
C     Step 3: Back transformation phase
C             -------------------------
C     Apply the Householder transformations of Step 1(b) onto the base
C     vectors of V associated with the bidiagonal submatrices with all
C     singular values less than or equal to THETA.
C
C     Step 4: Computation of F and Y
C             ----------------------
C     Let V2 be the matrix of the columns of V corresponding to the
C     (N + L - RANK) smallest singular values of C.
C     Compute with Householder transformations the matrices F and Y
C     such that:
C
C                       |VH   Y|
C              V2 x Q = |      |
C                       |0    F|
C
C     where Q is an orthogonal matrix, VH is an N-by-(N-RANK) matrix,
C     Y is an N-by-L matrix and F is an L-by-L upper triangular matrix.
C     If F is singular, then reduce the value of RANK by one and repeat
C     Steps 2, 3 and 4.
C
C     Step 5: Computation of the TLS solution
C             -------------------------------
C     If F is non-singular then the solution X is obtained by solving
C     the following equations by forward elimination:
C
C              X F = -Y.
C
C     Notes:
C     If RANK is lowered in Step 4, some additional base vectors must
C     be computed in Step 2. The additional computations are kept to
C     a minimum.
C     If RANK is lowered in Step 4 but the multiplicity of the RANK-th
C     singular value is larger than 1, then the value of RANK is further
C     lowered with its multiplicity defined by the parameter TOL. This
C     is done at the beginning of Step 2 by calling SLICOT Library
C     routine MB03MD (from MB04YD), which estimates THETA using a
C     bisection method. If F in Step 4 is singular, then the computed
C     solution is infinite and hence does not satisfy the second TLS
C     criterion (see TLS definition). For these cases, Golub and
C     Van Loan [1] claim that the TLS problem has no solution. The
C     properties of these so-called nongeneric problems are described
C     in [6] and the TLS computations are generalized in order to solve
C     them. As proven in [6], the proposed generalization satisfies the
C     TLS criteria for any number L of observation vectors in B provided
C     that, in addition, the solution | X| is constrained to be
C                                     |-I|
C     orthogonal to all vectors of the form |w| which belong to the
C                                           |0|
C     space generated by the columns of the submatrix |Y|.
C                                                     |F|
C
C     REFERENCES
C
C     [1] Golub, G.H. and Van Loan, C.F.
C         An Analysis of the Total Least-Squares Problem.
C         SIAM J. Numer. Anal., 17, pp. 883-893, 1980.
C
C     [2] Van Huffel, S., Vandewalle, J. and Haegemans, A.
C         An Efficient and Reliable Algorithm for Computing the
C         Singular Subspace of a Matrix Associated with its Smallest
C         Singular Values.
C         J. Comput. and Appl. Math., 19, pp. 313-330, 1987.
C
C     [3] Van Huffel, S.
C         Analysis of the Total Least Squares Problem and its Use in
C         Parameter Estimation.
C         Doctoral dissertation, Dept. of Electr. Eng., Katholieke
C         Universiteit Leuven, Belgium, June 1987.
C
C     [4] Chan, T.F.
C         An Improved Algorithm for Computing the Singular Value
C         Decomposition.
C         ACM TOMS, 8, pp. 72-83, 1982.
C
C     [5] Van Huffel, S. and Vandewalle, J.
C         The Partial Total Least Squares Algorithm.
C         J. Comput. Appl. Math., 21, pp. 333-341, 1988.
C
C     [6] Van Huffel, S. and Vandewalle, J.
C         Analysis and Solution of the Nongeneric Total Least Squares
C         Problem.
C         SIAM J. Matr. Anal. and Appl., 9, pp. 360-372, 1988.
C
C     NUMERICAL ASPECTS
C
C     The computational efficiency of the PTLS algorithm compared with
C     the classical TLS algorithm (see [2 - 5]) is obtained by making
C     use of PSVD (see [1]) instead of performing the entire SVD.
C     Depending on the gap between the RANK-th and the (RANK+1)-th
C     singular values of C, the number (N + L - RANK) of base vectors to
C     be computed with respect to the column dimension (N + L) of C and
C     the desired accuracy RELTOL, the algorithm used by this routine is
C     approximately twice as fast as the classical TLS algorithm at the
C     expense of extra storage requirements, namely:
C       (N + L) x (N + L - 1)/2  if M >= N + L or
C       M x (N + L - (M - 1)/2)  if M <  N + L.
C     This is because the Householder transformations performed on the
C     rows of C in the bidiagonalization phase (see Step 1) must be kept
C     until the end (Step 5).
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C     Supersedes Release 2.0 routine MB02BD by S. Van Huffel, Katholieke
C     University, Leuven, Belgium.
C
C     REVISIONS
C
C     V. Sima. June 30, 1997, Oct. 19, 2003, Feb. 15, 2004, Aug. 2011.
C
C     KEYWORDS
C
C     Least-squares approximation, singular subspace, singular value
C     decomposition, singular values, total least-squares.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, IWARN, L, LDC, LDWORK, LDX, M, N, RANK
      DOUBLE PRECISION  RELTOL, THETA, TOL
C     .. Array Arguments ..
      LOGICAL           BWORK(*), INUL(*)
      INTEGER           IWORK(*)
      DOUBLE PRECISION  C(LDC,*), DWORK(*), Q(*), X(LDX,*)
C     .. Local Scalars ..
      LOGICAL           LFIRST, LQUERY, SUFWRK, USEQR
      INTEGER           I, I1, IFAIL, IHOUSH, IJ, IOFF, ITAUP, ITAUQ,
     $                  IWARM, J, J1, JF, JV, JWORK, K, KF, KJ, LDF, LW,
     $                  MC, MINWRK, MJ, MNL, N1, NJ, NL, P, WRKOPT
      DOUBLE PRECISION  CS, EPS, FIRST, FNORM, HH, INPROD, RCOND, SN,
     $                  TEMP
C     .. Local Arrays ..
      DOUBLE PRECISION  DUMMY(2)
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      DOUBLE PRECISION  DLAMCH, DLANGE, DLANTR
      EXTERNAL          DLAMCH, DLANGE, DLANTR, ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEBRD, DGEQRF, DGERQF, DLARF, DLARFG,
     $                  DLARTG, DLASET, DORMBR, DORMRQ, DTRCON, DTRSM,
     $                  MB04YD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
      IWARN = 0
      INFO  = 0
      NL = N + L
      K  = MAX( M, NL )
      P  = MIN( M, NL )
      IF ( M.GE.NL ) THEN
         LW = ( NL*( NL - 1 ) )/2
      ELSE
         LW = M*NL - ( M*( M - 1 ) )/2
      END IF
      JV = P + LW + MAX( 6*NL - 5, L*L + MAX( NL, 3*L ) )
C
C     Test the input scalar arguments.
C
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( L.LT.0 ) THEN
         INFO = -3
      ELSE IF( RANK.GT.MIN( M, N ) ) THEN
         INFO = -4
      ELSE IF( ( RANK.LT.0 ) .AND. ( THETA.LT.ZERO ) ) THEN
         INFO = -5
      ELSE IF( LDC.LT.MAX( 1, K ) ) THEN
         INFO = -7
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE
         USEQR = M.GE.MAX( NL, ILAENV( 6, 'DGESVD', 'N' // 'N', M, NL,
     $                                 0, 0 ) )
         LQUERY = LDWORK.EQ.-1
         MINWRK = MAX( 2, K + 2*P, JV )
         WRKOPT = MINWRK
         IF ( USEQR ) THEN
            MNL = NL
         ELSE
            MNL = M
         END IF
         IF( LQUERY ) THEN
            IF ( USEQR ) THEN
               CALL DGEQRF( M, NL, C, LDC, DWORK, DWORK, -1, IFAIL )
               WRKOPT = MAX( WRKOPT, NL + INT( DWORK(1) ) )
            END IF
            CALL DGEBRD( MNL, NL, C, LDC, Q, Q, DWORK, DWORK, DWORK, -1,
     $                   IFAIL )
            CALL DORMBR( 'P vectors', 'Left', 'No transpose', NL, NL,
     $                   MNL, DWORK, P, DWORK, DWORK, NL, DWORK(2), -1,
     $                   IFAIL )
            CALL DGERQF( L, NL, DWORK, NL, DWORK, DUMMY, -1, IFAIL )
            CALL DORMRQ( 'Right', 'Transpose', N, NL, L, DWORK, NL,
     $                   DWORK, DWORK, NL, DUMMY(2), -1, IFAIL )
            TEMP   = MAX( DWORK(2), DUMMY(1), DUMMY(2) )
            WRKOPT = MAX( WRKOPT, 2*P + INT( DWORK(1) ), 
     $                    P + P*NL + MAX( 6*NL-5,
     $                                    NL**2 + MAX( INT( TEMP ),
     $                                                 3*L ) ) )
         END IF
         IF( LDWORK.LT.MINWRK .AND. .NOT.LQUERY )
     $       INFO = -16
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB02ND', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( M, NL ).EQ.0 ) THEN
         IF ( M.EQ.0 ) THEN
            CALL DLASET( 'Full', NL, NL, ZERO, ONE, C, LDC )
            CALL DLASET( 'Full', N, L, ZERO, ZERO, X, LDX )
C
            DO 10 I = 1, NL
               INUL(I) = .TRUE.
   10       CONTINUE
C
         END IF
         IF ( RANK.GE.0 )
     $      THETA = ZERO
         RANK = 0
         DWORK(1) = TWO
         DWORK(2) = ONE
         RETURN
      END IF
C
      WRKOPT = 2
      N1 = N + 1
C
      EPS = DLAMCH( 'Precision' )
      LFIRST = .TRUE.
C
C     Initializations.
C
      DO 20 I = 1, P
         INUL(I)  = .FALSE.
         BWORK(I) = .FALSE.
   20 CONTINUE
C
      DO 40 I = P + 1, NL
         INUL(I)  = .TRUE.
         BWORK(I) = .FALSE.
   40 CONTINUE
C
C     Subroutine MB02ND solves a set of linear equations by a Total
C     Least Squares Approximation, based on the Partial SVD.
C
C     Step 1: Bidiagonalization phase
C             -----------------------
C     1.a): If M is large enough than N+L, transform C into upper
C           triangular form R by Householder transformations.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF ( USEQR ) THEN
C
C        Workspace: need   2*(N+L),
C                   prefer N+L + (N+L)*NB.
C
         ITAUQ = 1
         JWORK = ITAUQ + NL
         CALL DGEQRF( M, NL, C, LDC, DWORK(ITAUQ), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
         IF ( NL.GT.1 )
     $      CALL DLASET( 'Lower', NL-1, NL-1, ZERO, ZERO, C(2,1), LDC )
      END IF
C
C     1.b): Transform C (or R) into bidiagonal form Q using Householder
C           transformations.
C     Workspace: need   2*min(M,N+L) + max(M,N+L),
C                prefer 2*min(M,N+L) + (M+N+L)*NB.
C
      ITAUP = 1
      ITAUQ = ITAUP + P
      JWORK = ITAUQ + P
      CALL DGEBRD( MNL, NL, C, LDC, Q, Q(P+1), DWORK(ITAUQ),
     $             DWORK(ITAUP), DWORK(JWORK), LDWORK-JWORK+1, IFAIL )
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     If the matrix is lower bidiagonal, rotate to be upper bidiagonal
C     by applying Givens rotations on the left.
C
      IF ( M.LT.NL ) THEN
         IOFF = 0
C
         DO 60 I = 1, P - 1
            CALL DLARTG( Q(I), Q(P+I), CS, SN, TEMP )
            Q(I)   = TEMP
            Q(P+I) = SN*Q(I+1)
            Q(I+1) = CS*Q(I+1)
   60    CONTINUE
C
      ELSE
         IOFF = 1
      END IF
C
C     Store the Householder transformations performed onto the rows of C
C     in the extra storage locations DWORK(IHOUSH).
C     Workspace: need   LDW = min(M,N+L) + (N+L)*(N+L-1)/2, if M >= N+L,
C                       LDW = min(M,N+L) + M*(N+L-(M-1)/2), if M <  N+L;
C                prefer LDW = min(M,N+L) + (N+L)**2,        if M >= N+L,
C                       LDW = min(M,N+L) + M*(N+L),         if M <  N+L.
C
      IHOUSH = ITAUQ
      MC = NL - IOFF
      KF = IHOUSH + P*NL
      SUFWRK = LDWORK.GE.( KF + MAX( 6*NL-5,
     $                               NL**2 + MAX( NL, 3*L ) - 1 ) )
      IF ( SUFWRK ) THEN
C
C        Enough workspace for a fast algorithm.
C
         CALL DLACPY( 'Upper', P, NL, C, LDC, DWORK(IHOUSH), P )
         KJ = KF
         WRKOPT = MAX( WRKOPT, KF - 1 )
      ELSE
C
C        Not enough workspace for a fast algorithm.
C
         KJ = IHOUSH
C
         DO 80 NJ = 1, MIN( P, MC )
            J = MC - NJ + 1
            CALL DCOPY( J, C(NJ,NJ+IOFF), LDC, DWORK(KJ), 1 )
            KJ = KJ + J
   80    CONTINUE
C
      END IF
C
C     1.c): Initialize the right singular base matrix V with the
C           identity matrix (V overwrites C).
C
      CALL DLASET( 'Full', NL, NL, ZERO, ONE, C, LDC )
      JV = KJ
      IWARM = 0
C
C     REPEAT
C
C     Compute the Householder matrix Q and matrices F and Y such that
C     F is nonsingular.
C
C     Step 2: Partial diagonalization phase.
C             -----------------------------
C     Diagonalize the bidiagonal Q partially until convergence to
C     the desired right singular subspace.
C     Workspace: LDW + 6*(N+L)-5.
C
  100 CONTINUE
      JWORK = JV
      CALL MB04YD( 'No U', 'Update V', P, NL, RANK, THETA, Q, Q(P+1),
     $             DUMMY, 1, C, LDC, INUL, TOL, RELTOL, DWORK(JWORK),
     $             LDWORK-JWORK+1, IWARN, INFO )
      WRKOPT = MAX( WRKOPT, JWORK + 6*NL - 6 )
C
      IWARN = MAX( IWARN, IWARM )
      IF ( INFO.GT.0 )
     $   RETURN
C
C     Set pointers to the selected base vectors in the right singular
C     matrix of C.
C
      K = 0
C
      DO 120 I = 1, NL
         IF ( INUL(I) ) THEN
            K = K + 1
            IWORK(K) = I
         END IF
  120 CONTINUE
C
      IF ( K.LT.L ) THEN
C
C        Rank of the TLS approximation is larger than min(M,N).
C
         INFO = 2
         RETURN
      END IF
C
C     Step 3: Back transformation phase.
C             -------------------------
C     Apply in backward order the Householder transformations (stored
C     in DWORK(IHOUSH)) performed onto the rows of C during the
C     bidiagonalization phase, to the selected base vectors (specified
C     by INUL(I) = .TRUE.). Already transformed vectors are those for
C     which BWORK(I) = .TRUE..
C
      KF = K
      IF ( SUFWRK.AND.LFIRST ) THEN
C
C        Enough workspace for a fast algorithm and first pass.
C
         IJ = JV
C
         DO 140 J = 1, K
            CALL DCOPY (NL, C(1,IWORK(J)), 1, DWORK(IJ), 1 )
            IJ = IJ + NL
  140    CONTINUE
C
C        Workspace: need   LDW + (N+L)*K + K,
C                   prefer LDW + (N+L)*K + K*NB.
C
         IJ = JV
         JWORK = IJ + NL*K
         CALL DORMBR( 'P vectors', 'Left', 'No transpose', NL, K,
     $                MNL, DWORK(IHOUSH), P, DWORK(ITAUP), DWORK(IJ),
     $                NL, DWORK(JWORK), LDWORK-JWORK+1, IFAIL )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
         DO 160 I = 1, NL
            IF ( INUL(I) .AND. ( .NOT. BWORK(I) ) )
     $         BWORK(I) = .TRUE.
  160    CONTINUE
C
      ELSE
C
C        Not enough workspace for a fast algorithm or subsequent passes.
C
         DO 180 I = 1, NL
            IF ( INUL(I) .AND. ( .NOT. BWORK(I) ) ) THEN
               KJ = JV
C
               DO 170 NJ = MIN( P, MC ), 1, -1
                  J = MC - NJ + 1
                  KJ = KJ - J
                  FIRST = DWORK(KJ)
                  DWORK(KJ) = ONE
                  CALL DLARF( 'Left', J, 1, DWORK(KJ), 1,
     $                        DWORK(ITAUP+NJ-1), C(NJ+IOFF,I), LDC,
     $                        DWORK(JWORK) )
                  DWORK(KJ) = FIRST
  170          CONTINUE
C
               BWORK(I) = .TRUE.
            END IF
  180    CONTINUE
      END IF
C
      IF ( RANK.LE.0 )
     $   RANK = 0
      IF ( MIN( RANK, L ).EQ.0 ) THEN
         IF ( SUFWRK.AND.LFIRST )
     $      CALL DLACPY( 'Full', NL, K, DWORK(JV), NL, C, LDC )
         DWORK(1) = WRKOPT
         DWORK(2) = ONE
         RETURN
      END IF
C
C     Step 4: Compute matrices F and Y
C             ------------------------
C             using Householder transformation Q.
C
C     Compute the orthogonal matrix Q (in factorized form) and the
C     matrices F and Y using RQ factorization. It is assumed that,
C     generically, the last L rows of V2 matrix have full rank.
C     The code could not be the most efficient when RANK has been
C     lowered, because the already created zero pattern of the last
C     L rows of V2 matrix is not exploited.
C
      IF ( SUFWRK.AND.LFIRST ) THEN
C
C        Enough workspace for a fast algorithm and first pass.
C        Workspace: need   LDW1 + 2*L,
C                   prefer LDW1 + L + L*NB, where
C                          LDW1 = LDW + (N+L)*K;
C
         ITAUQ = JWORK
         JWORK = ITAUQ + L
         CALL DGERQF( L, K, DWORK(JV+N), NL, DWORK(ITAUQ), DWORK(JWORK),
     $                LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C        Workspace: need   LDW1 + N+L,
C                   prefer LDW1 + L + N*NB.
C
         CALL DORMRQ( 'Right', 'Transpose', N, K, L, DWORK(JV+N), NL,
     $                DWORK(ITAUQ), DWORK(JV), NL, DWORK(JWORK),
     $                LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
         JF = JV + NL*(K-L) + N
         LDF = NL
         JWORK = JF + LDF*L - N
         CALL DLASET( 'Full', L, K-L, ZERO, ZERO, DWORK(JV+N), LDF )
         IF ( L.GT.1 )
     $      CALL DLASET( 'Lower', L-1, L-1, ZERO, ZERO, DWORK(JF+1),
     $                   LDF )
         IJ = JV
C
         DO 200 J = 1, K
            CALL DCOPY( NL, DWORK(IJ), 1, C(1,IWORK(J)), 1 )
            IJ = IJ + NL
  200    CONTINUE
C
      ELSE
C
C        Not enough workspace for a fast algorithm or subsequent passes.
C        Workspace: LDW2 + N+L, where LDW2 = LDW + L*L.
C
         I  = NL
         JF = JV
         LDF = L
         JWORK  = JF + LDF*L
         WRKOPT = MAX( WRKOPT, JWORK+NL-1 )
C
C        WHILE ( ( K >= 1 ) .AND. ( I > N ) ) DO
  220    CONTINUE
         IF ( ( K.GE.1 ) .AND. ( I.GT.N ) ) THEN
C
            DO 240 J = 1, K
               DWORK(JWORK+J-1) = C(I,IWORK(J))
  240       CONTINUE
C
C           Compute Householder transformation.
C
            CALL DLARFG( K, DWORK(JWORK+K-1), DWORK(JWORK), 1, TEMP )
            C(I,IWORK(K)) = DWORK(JWORK+K-1)
            IF ( TEMP.NE.ZERO ) THEN
C
C              Apply Householder transformation onto the selected base
C              vectors.
C
               DO 300 I1 = 1, I - 1
                  INPROD = C(I1,IWORK(K))
C
                  DO 260 J = 1, K - 1
                     INPROD = INPROD + DWORK(JWORK+J-1)*C(I1,IWORK(J))
  260             CONTINUE
C
                  HH = INPROD*TEMP
                  C(I1,IWORK(K)) = C(I1,IWORK(K)) - HH
C
                  DO 280 J = 1, K - 1
                     J1 = IWORK(J)
                     C(I1,J1) = C(I1,J1) - DWORK(JWORK+J-1)*HH
                     C(I,J1)  = ZERO
  280             CONTINUE
C
  300          CONTINUE
C
            END IF
            CALL DCOPY( I-N, C(N1,IWORK(K)), 1, DWORK(JF+(I-N-1)*L), 1 )
            K = K - 1
            I = I - 1
            GO TO 220
         END IF
C        END WHILE 220
      END IF
C
C     Estimate the reciprocal condition number of the matrix F.
C     If F singular, lower the rank of the TLS approximation.
C     Workspace: LDW1 + 3*L or
C                LDW2 + 3*L.
C
      CALL DTRCON( '1-norm', 'Upper', 'Non-unit', L, DWORK(JF), LDF,
     $             RCOND, DWORK(JWORK), IWORK(KF+1), INFO )
      WRKOPT = MAX( WRKOPT, JWORK + 3*L - 1 )
C
      DO 320 J = 1, L
         CALL DCOPY( N, C(1,IWORK(KF-L+J)), 1, X(1,J), 1 )
  320 CONTINUE
C
      FNORM = DLANTR( '1-norm', 'Upper', 'Non-unit', L, L, DWORK(JF),
     $                LDF, DWORK(JWORK) )
      IF ( RCOND.LE.EPS*FNORM ) THEN
         RANK = RANK - 1
         GO TO 340
      END IF
      IF ( FNORM.LE.EPS*DLANGE( '1-norm', N, L, X, LDX,
     $                             DWORK(JWORK) ) ) THEN
         RANK = RANK - L
         GO TO 340
      ELSE
         GO TO 400
      END IF
C
  340    CONTINUE
         IWARM = 2
         THETA = -ONE
         IF ( SUFWRK.AND.LFIRST ) THEN
C
C           Rearrange the stored Householder transformations for
C           subsequent passes, taking care to avoid overwriting.
C
            IF ( P.LT.NL ) THEN
               KJ = IHOUSH + NL*(NL - 1)
               MJ = IHOUSH +  P*(NL - 1)
C
               DO 360 NJ = 1, NL
                  DO 350 J = P - 1, 0, -1
                     DWORK(KJ+J) = DWORK(MJ+J)
  350             CONTINUE
                  KJ = KJ - NL
                  MJ = MJ - P
  360          CONTINUE
C
            END IF
            KJ = IHOUSH
            MJ = IHOUSH + NL*IOFF
C
            DO 380 NJ = 1, MIN( P, MC )
               DO 370 J = 0, MC - NJ
                  DWORK(KJ) = DWORK(MJ+J*P)
                  KJ = KJ + 1
  370          CONTINUE
               MJ = MJ + NL + 1
  380       CONTINUE
C
            JV = KJ
            LFIRST = .FALSE.
         END IF
         GO TO 100
C     UNTIL ( F nonsingular, i.e., RCOND.GT.EPS*FNORM or
C                                  FNORM.GT.EPS*norm(Y) )
  400 CONTINUE
C
C     Step 5: Compute TLS solution.
C             --------------------
C     Solve X F = -Y  by forward elimination  (F is upper triangular).
C
      CALL DTRSM( 'Right', 'Upper', 'No transpose', 'Non-unit', N, L,
     $            -ONE, DWORK(JF), LDF, X, LDX )
C
C     Set the optimal workspace and reciprocal condition number of F.
C
      DWORK(1) = WRKOPT
      DWORK(2) = RCOND
C
      RETURN
C *** Last line of MB02ND ***
      END