control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
<HTML>
<HEAD><title>On-Line SLICOT Supporting Routines Overview</title></HEAD>
<BODY>

<H1>SLICOT SUPPORTING ROUTINES INDEX</H1>
<HR>
To go to the beginning of a chapter click on the appropriate letter below: <p>
<center>
<A href="#A"><B>A</B></A> ;
<A href="#B"><B>B</B></A> ;
<A href="#C"><B>C</B></A> ;
<A href="#D"><B>D</B></A> ;
<A href="#F"><B>F</B></A> ;
<A href="#I"><B>I</B></A> ;
<A href="#M"><B>M</B></A> ;
<A href="#N"><B>N</B></A> ;
<A href="#S"><B>S</B></A> ;
<A href="#T"><B>T</B></A> ;
<A href="#U"><B>U</B></A> ;
</center>
<BR>
or <A href="http://www.slicot.org/index.php?site=home">
<b>Return to SLICOT homepage</b></A>
<BR>
or <A href="..\libindex.html">
<b>Go to SLICOT LIBRARY INDEX</b></A>
<p>
<HR>
<A NAME="A"><H2>A - Analysis Routines</H2></A>
<h3>AB - State-Space Analysis</h3>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AB08NX.html">
<B>AB08NX</B></A>   Construction of a reduced system with input/output matrix Dr of full 
         row rank, preserving transmission zeros
<A href="AB08NY.html">
<B>AB08NY</B></A>   Construction of a reduced system with input/output matrix Dr of full 
         row rank, preserving transmission zeros (extended variant)
<A href="AB8NXZ.html">
<B>AB8NXZ</B></A>   Construction of a reduced system with input/output matrix Dr of full 
         row rank, preserving transmission zeros (complex case)
</PRE>
<h4>Model Reduction</h4>
<PRE>
<A href="AB09AX.html">
<B>AB09AX</B></A>   Balance & Truncate model reduction with state matrix in real Schur form  
<A href="AB09BX.html">
<B>AB09BX</B></A>   Singular perturbation approximation based model reduction with state
         matrix in real Schur form 
<A href="AB09CX.html">
<B>AB09CX</B></A>   Hankel norm approximation based model reduction with state matrix
         in real Schur form 
<A href="AB09HX.html">
<B>AB09HX</B></A>   Stochastic balancing model reduction of stable systems
<A href="AB09HY.html">
<B>AB09HY</B></A>   Cholesky factors of the controllability and observability Grammians
<A href="AB09IX.html">
<B>AB09IX</B></A>   Accuracy enhanced balancing related model reduction
<A href="AB09IY.html">
<B>AB09IY</B></A>   Cholesky factors of the frequency-weighted controllability and 
         observability Grammians
<A href="AB09JV.html">
<B>AB09JV</B></A>   State-space representation of a projection of a left weighted 
         transfer-function matrix
<A href="AB09JW.html">
<B>AB09JW</B></A>   State-space representation of a projection of a right weighted 
         transfer-function matrix
<A href="AB09JX.html">
<B>AB09JX</B></A>   Check stability/antistability of finite eigenvalues
<A href="AB09KX.html">
<B>AB09KX</B></A>   Stable projection of V*G*W or conj(V)*G*conj(W)
</PRE>
<h4>System Norms</h4>
<PRE>
<A href="AB13AX.html">
<B>AB13AX</B></A>   Hankel-norm of a stable system with state matrix in real Schur form  
<A href="AB13DX.html">
<B>AB13DX</B></A>   Maximum singular value of a transfer-function matrix
</PRE>
<h3>AG - Generalized State-Space Analysis</h3>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AG08BY.html">
<B>AG08BY</B></A>   Construction of a reduced system with input/output matrix Dr of full 
         row rank, preserving the finite Smith zeros
<A href="AG8BYZ.html">
<B>AG8BYZ</B></A>   Construction of a reduced system with input/output matrix Dr of full 
         row rank, preserving the finite Smith zeros (complex case)
</PRE>
<HR>
<A NAME="B"><H2>B - Benchmark and Test Problems</H2></A> 
<HR>
<A NAME="C"><H2>C - Adaptive Control</H2></A>
<HR>
<A NAME="D"><H2>D - Data Analysis</H2></A>
<h3>DE - Covariances</h3>
<h3>DF - Spectra</h3>
<h3>DG - Discrete Fourier Transforms</h3>
<h3>DK - Windowing</h3>
<HR>
<A NAME="F"><H2>F - Filtering</H2></A>
<h3>FB - Kalman Filters</h3>
<HR>
<A NAME="I"><H2>I - Identification</H2></A>
<h3>IB - Subspace Identification</h3>
<h4>Time Invariant State-space Systems</h4>
<PRE>
<A href="IB01MD.html">
<B>IB01MD</B></A>   Upper triangular factor in QR factorization of a
         block-Hankel-block matrix
<A href="IB01MY.html">
<B>IB01MY</B></A>   Upper triangular factor in fast QR factorization of a 
         block-Hankel-block matrix
<A href="IB01ND.html">
<B>IB01ND</B></A>   Singular value decomposition giving the system order
<A href="IB01OD.html">
<B>IB01OD</B></A>   Estimating the system order
<A href="IB01OY.html">
<B>IB01OY</B></A>   User's confirmation of the system order
<A href="IB01PD.html">
<B>IB01PD</B></A>   Estimating the system matrices and covariances
<A href="IB01PX.html">
<B>IB01PX</B></A>   Estimating the matrices B and D of a system using Kronecker products
<A href="IB01PY.html">
<B>IB01PY</B></A>   Estimating the matrices B and D of a system exploiting the structure
<A href="IB01QD.html">
<B>IB01QD</B></A>   Estimating the initial state and the matrices B and D of a system
<A href="IB01RD.html">
<B>IB01RD</B></A>   Estimating the initial state of a system
</PRE>
<HR>
<A NAME="M"><H2>M - Mathematical Routines</H2></A>
<h3>MA - Auxiliary Routines</h3>
<h4>Mathematical Scalar Routines</h4>
<PRE>
<A href="MA01AD.html">
<B>MA01AD</B></A>   Complex square root of a complex number in real arithmetic
<A href="MA01BD.html">
<B>MA01BD</B></A>   Safely computing the general product of K real scalars
<A href="MA01BZ.html">
<B>MA01BZ</B></A>   Safely computing the general product of K complex scalars
<A href="MA01CD.html">
<B>MA01CD</B></A>   Safely computing the sign of a sum of two real numbers represented
         using integer powers of a base
<A href="MA01DD.html">
<B>MA01DD</B></A>   Approximate symmetric chordal metric for two finite complex numbers
<A href="MA01DZ.html">
<B>MA01DZ</B></A>   Approximate symmetric chordal metric for two, possibly infinite, complex numbers
</PRE>
<h4>Mathematical Vector/Matrix Routines</h4>
<PRE>
<A href="MA02AD.html">
<B>MA02AD</B></A>   Transpose of a matrix
<A href="MA02AZ.html">
<B>MA02AZ</B></A>   (Conjugate) transpose of a complex matrix
<A href="MA02BD.html">
<B>MA02BD</B></A>   Reversing the order of rows and/or columns of a matrix
<A href="MA02BZ.html">
<B>MA02BZ</B></A>   Reversing the order of rows and/or columns of a matrix (complex case)
<A href="MA02CD.html">
<B>MA02CD</B></A>   Pertranspose of the central band of a square matrix 
<A href="MA02CZ.html">
<B>MA02CZ</B></A>   Pertranspose of the central band of a square matrix (complex case)
<A href="MA02DD.html">
<B>MA02DD</B></A>   Pack/unpack the upper or lower triangle of a symmetric matrix 
<A href="MA02ED.html">
<B>MA02ED</B></A>   Construct a triangle of a symmetric matrix, given the other triangle 
<A href="MA02ES.html">
<B>MA02ES</B></A>   Construct a triangle of a skew-symmetric real matrix, given the 
         other triangle
<A href="MA02EZ.html">
<B>MA02EZ</B></A>   Construct a triangle of a (skew-)symmetric/Hermitian complex matrix,
         given the other triangle
<A href="MA02FD.html">
<B>MA02FD</B></A>   Hyperbolic plane rotation 
<A href="MA02GD.html">
<B>MA02GD</B></A>   Column interchanges on a real matrix 
<A href="MA02GZ.html">
<B>MA02GZ</B></A>   Column interchanges on a complex matrix 
<A href="MA02HD.html">
<B>MA02HD</B></A>   Check if a matrix is a scalar multiple of an identity-like matrix
<A href="MA02HZ.html">
<B>MA02HZ</B></A>   Check if a complex matrix is a scalar multiple of an identity-like matrix
<A href="MA02ID.html">
<B>MA02ID</B></A>   Matrix 1-, Frobenius, or infinity norms of a skew-Hamiltonian matrix
<A href="MA02IZ.html">
<B>MA02IZ</B></A>   Matrix 1-, Frobenius, or infinity norms of a complex skew-Hamiltonian matrix
<A href="MA02JD.html">
<B>MA02JD</B></A>   Test if a matrix is an orthogonal symplectic matrix
<A href="MA02JZ.html">
<B>MA02JZ</B></A>   Test if a matrix is a unitary symplectic matrix
<A href="MA02MD.html">
<B>MA02MD</B></A>   Norms of a real skew-symmetric matrix
<A href="MA02MZ.html">
<B>MA02MZ</B></A>   Norms of a complex skew-symmetric matrix
<A href="MA02NZ.html">
<B>MA02NZ</B></A>   Two rows and columns permutation of a (skew-)symmetric/Hermitian
         complex matrix
<A href="MA02OD.html">
<B>MA02OD</B></A>   Number of zero rows of a real (skew-)Hamiltonian matrix
<A href="MA02OZ.html">
<B>MA02OZ</B></A>   Number of zero rows of a complex (skew-)Hamiltonian matrix
<A href="MA02PD.html">
<B>MA02PD</B></A>   Number of zero rows and columns of a real matrix
<A href="MA02PZ.html">
<B>MA02PZ</B></A>   Number of zero rows and columns of a complex matrix
<A href="MA02RD.html">
<B>MA02RD</B></A>   Sorting a real vector and rearranging another vector
<A href="MA02SD.html">
<B>MA02SD</B></A>   Smallest nonzero absolute value of the elements of a real matrix
<A href="MB01KD.html">
<B>MB01KD</B></A>   Rank 2k operation alpha*A*trans(B) - alpha*B*trans(A) + beta*C,
         with A and C skew-symmetric matrices
<A href="MB01LD.html">
<B>MB01LD</B></A>   Computation of matrix expression alpha*R + beta*A*X*trans(A) with 
         skew-symmetric matrices R and X
<A href="MB01MD.html">
<B>MB01MD</B></A>   Matrix-vector operation alpha*A*x + beta*y, with A a skew-symmetric matrix
<A href="MB01ND.html">
<B>MB01ND</B></A>   Rank 2 operation alpha*x*trans(y) - alpha*y*trans(x) + A, with A a 
         skew-symmetric matrix
<A href="MB01SD.html">
<B>MB01SD</B></A>   Rows and/or columns scaling of a matrix 
<A href="MB01SS.html">
<B>MB01SS</B></A>   Symmetric scaling of a symmetric matrix 
</PRE>
<h3>MB - Linear Algebra</h3>
<h4>Basic Linear Algebra Manipulations</h4>
<PRE>
<A href="MB01OC.html">
<B>MB01OC</B></A>   Computation of matrix expression alpha R + beta ( op(H) X + X op(H)' ) 
         with R, X symmetric and H upper Hessenberg
<A href="MB01OD.html">
<B>MB01OD</B></A>   Computation of matrix expression alpha R + beta ( op(H) X op(E)' + op(E) X op(H)' )  
         with R, X symmetric, H upper Hessenberg, and E upper triangular
<A href="MB01OE.html">
<B>MB01OE</B></A>   Computation of matrix expression alpha R + beta ( op(H) op(E)' + op(E) op(H)' )
          with R symmetric, H upper Hessenberg, and E upper triangular
<A href="MB01OH.html">
<B>MB01OH</B></A>   Computation of matrix expression alpha R + beta ( op(H) op(A)' + op(A) op(H)' ) 
         with R symmetric, and A, H upper Hessenberg
<A href="MB01OO.html">
<B>MB01OO</B></A>   Computation of P or P' with P = op(H) X op(E)' with X symmetric, 
         H upper Hessenberg, and E upper triangular
<A href="MB01OS.html">
<B>MB01OS</B></A>   Computation of matrix expression P = H X or P = X H, with X symmetric and 
         H upper Hessenberg
<A href="MB01OT.html">
<B>MB01OT</B></A>   Computation of matrix expression alpha R + beta ( op(E) op(T)' + op(T) op(E)' ) 
         with R symmetric and E, T upper triangular
<A href="MB01RH.html">
<B>MB01RH</B></A>   Computation of matrix expression alpha R + beta op(H) X op(H)' 
         with R, X symmetric and H upper Hessenberg
<A href="MB01RT.html">
<B>MB01RT</B></A>   Computation of matrix expression alpha R + beta op(E) X op(E)'  
         with R, X symmetric and E upper triangular
<A href="MB01RU.html">
<B>MB01RU</B></A>   Computation of matrix expression alpha*R + beta*A*X*trans(A)
         (MB01RD variant)
<A href="MB01RW.html">
<B>MB01RW</B></A>   Computation of matrix expression alpha*A*X*trans(A), X symmetric (BLAS 2)
<A href="MB01RX.html">
<B>MB01RX</B></A>   Computing a triangle of the matrix expressions alpha*R + beta*A*B 
         or alpha*R + beta*B*A
<A href="MB01RY.html">
<B>MB01RY</B></A>   Computing a triangle of the matrix expressions alpha*R + beta*H*B 
         or alpha*R + beta*B*H, with H an upper Hessenberg matrix
<A href="MB01UW.html">
<B>MB01UW</B></A>   Computation of matrix expressions alpha*H*A or alpha*A*H,
         overwritting A, with H an upper Hessenberg matrix
<A href="MB01VD.html">
<B>MB01VD</B></A>   Kronecker product of two matrices
<A href="MB01XY.html">
<B>MB01XY</B></A>   Computation of the product U'*U or L*L', with U and L upper and 
         lower triangular matrices (unblock algorithm)
<A href="SB03OV.html">
<B>SB03OV</B></A>   Construction of a complex plane rotation to annihilate a real number,
         modifying a complex number
<A href="SG03BY.html">
<B>SG03BY</B></A>   Computing a complex plane rotation in real arithmetic 
<A href="SG03BR.html">
<B>SG03BR</B></A>   Computing a complex plane rotation in real arithmetic (SG03BY version
         - adaptation of LAPACK ZLARTG)
</PRE>
<h4>Linear Equations and Least Squares</h4>
<PRE>
<A href="MB02CU.html">
<B>MB02CU</B></A>   Bringing the first blocks of a generator in proper form
         (extended version of MB02CX)
<A href="MB02CV.html">
<B>MB02CV</B></A>   Applying the MB02CU transformations on other columns / rows of 
         the generator
<A href="MB02CX.html">
<B>MB02CX</B></A>   Bringing the first blocks of a generator in proper form
<A href="MB02CY.html">
<B>MB02CY</B></A>   Applying the MB02CX transformations on other columns / rows of 
         the generator
<A href="MB02NY.html">
<B>MB02NY</B></A>   Separation of a zero singular value of a bidiagonal submatrix
<A href="MB02QY.html">
<B>MB02QY</B></A>   Minimum-norm least squares solution, given a rank-revealing
         QR factorization
<A href="MB02UU.html">
<B>MB02UU</B></A>   Solution of linear equations using LU factorization with complete pivoting
<A href="MB02UV.html">
<B>MB02UV</B></A>   LU factorization with complete pivoting
<A href="MB02UW.html">
<B>MB02UW</B></A>   Solution of linear equations of order at most 2 with possible scaling 
         and perturbation of system matrix
<A href="MB02WD.html">
<B>MB02WD</B></A>   Solution of a positive definite linear system A*x = b, or f(A, x) = b,
         using conjugate gradient algorithm
<A href="MB02XD.html">
<B>MB02XD</B></A>   Solution of a set of positive definite linear systems, A'*A*X = B, or
         f(A)*X = B, using Gaussian elimination
<A href="MB02YD.html">
<B>MB02YD</B></A>   Solution of the linear system A*x = b, D*x = 0, D diagonal
</PRE>
<h4>Eigenvalues and Eigenvectors</h4>
<PRE>
<A href="MB03AD.html">
<B>MB03AD</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a 
         product of matrices to the first unit vector
<A href="MB03AB.html">
<B>MB03AB</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant with explicit shifts)
<A href="MB03AE.html">
<B>MB03AE</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant with partial evaluation, 
         Hessenberg factor is the first one)
<A href="MB03AF.html">
<B>MB03AF</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant, Hessenberg factor is the 
         last one)
<A href="MB03AG.html">
<B>MB03AG</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant with evaluation, 
         Hessenberg factor is the first one)
<A href="MB03AH.html">
<B>MB03AH</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant with partial evaluation, 
         Hessenberg factor is the last one)
<A href="MB03AI.html">
<B>MB03AI</B></A>   Reducing the first column of a real Wilkinson shift polynomial for a  
         product of matrices to the first unit vector (variant with evaluation, 
         Hessenberg factor is the last one)
<A href="MB03BA.html">
<B>MB03BA</B></A>   Computing maps for Hessenberg index and signature array
<A href="MB03BB.html">
<B>MB03BB</B></A>   Eigenvalues of a 2-by-2 matrix product via a complex single shifted 
         periodic QZ algorithm
<A href="MB03BC.html">
<B>MB03BC</B></A>   Product singular value decomposition of K-1 triangular factors of 
         order 2
<A href="MB03BD.html">
<B>MB03BD</B></A>   Finding eigenvalues of a generalized matrix product in 
         Hessenberg-triangular form
<A href="MB03BE.html">
<B>MB03BE</B></A>   Applying iterations of a real single shifted periodic QZ algorithm 
         to a 2-by-2 matrix product
<A href="MB03BF.html">
<B>MB03BF</B></A>   Applying iterations of a real single shifted periodic QZ algorithm 
         to a 2-by-2 matrix product, with Hessenberg factor the last one
<A href="MB03BZ.html">
<B>MB03BZ</B></A>   Finding eigenvalues of a complex generalized matrix product in
         Hessenberg-triangular form
<A href="MB03CD.html">
<B>MB03CD</B></A>   Exchanging eigenvalues of a real 2-by-2, 3-by-3 or 4-by-4 block upper 
         triangular pencil (factored version)
<A href="MB03CZ.html">
<B>MB03CZ</B></A>   Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil 
         (factored version)
<A href="MB03DD.html">
<B>MB03DD</B></A>   Exchanging eigenvalues of a real 2-by-2, 3-by-3 or 4-by-4 block upper 
         triangular pencil
<A href="MB03DZ.html">
<B>MB03DZ</B></A>   Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil
<A href="MB03ED.html">
<B>MB03ED</B></A>   Reducing a real 2-by-2 or 4-by-4 block (anti-)diagonal 
         skew-Hamiltonian/Hamiltonian pencil to generalized Schur form and moving 
         eigenvalues with negative real parts to the top (factored version)
<A href="MB03FD.html">
<B>MB03FD</B></A>   Reducing a real 2-by-2 or 4-by-4 block (anti-)diagonal 
         skew-Hamiltonian/Hamiltonian pencil to generalized Schur form and moving 
         eigenvalues with negative real parts to the top
<A href="MB03GD.html">
<B>MB03GD</B></A>   Exchanging eigenvalues of a real 2-by-2 or 4-by-4 block upper 
         triangular skew-Hamiltonian/Hamiltonian pencil (factored version)
<A href="MB03GZ.html">
<B>MB03GZ</B></A>   Exchanging eigenvalues of a complex 2-by-2 skew-Hamiltonian/
         Hamiltonian pencil in structured Schur form (factored version)
<A href="MB03HD.html">
<B>MB03HD</B></A>   Exchanging eigenvalues of a real 2-by-2 or 4-by-4 skew-Hamiltonian/
         Hamiltonian pencil in structured Schur form
<A href="MB03HZ.html">
<B>MB03HZ</B></A>   Exchanging eigenvalues of a complex 2-by-2 skew-Hamiltonian/
         Hamiltonian pencil in structured Schur form
<A href="MB03ID.html">
<B>MB03ID</B></A>   Moving eigenvalues with negative real parts of a real 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil (factored version)
<A href="MB03IZ.html">
<B>MB03IZ</B></A>   Moving eigenvalues with negative real parts of a complex 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil (factored version)
<A href="MB03JD.html">
<B>MB03JD</B></A>   Moving eigenvalues with negative real parts of a real 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil
<A href="MB03JP.html">
<B>MB03JP</B></A>   Moving eigenvalues with negative real parts of a real 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil (applying transformations on panels of columns)
<A href="MB03JZ.html">
<B>MB03JZ</B></A>   Moving eigenvalues with negative real parts of a complex 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil
<A href="MB3JZP.html">
<B>MB3JZP</B></A>   Moving eigenvalues with negative real parts of a complex 
         skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the 
         leading subpencil (applying transformations on panels of columns)
<A href="MB03KA.html">
<B>MB03KA</B></A>   Moving diagonal blocks at a specified position in a formal matrix 
         product to another position
<A href="MB03KB.html">
<B>MB03KB</B></A>   Swapping pairs of adjacent diagonal blocks of sizes 1 and/or 2 in 
         a formal matrix product
<A href="MB03KC.html">
<B>MB03KC</B></A>   Reducing a 2-by-2 formal matrix product to periodic 
         Hessenberg-triangular form
<A href="MB03KD.html">
<B>MB03KD</B></A>   Reordering the diagonal blocks of a formal matrix product using 
         periodic QZ algorithm
<A href="MB03KE.html">
<B>MB03KE</B></A>   Solving periodic Sylvester-like equations with matrices of order 
         at most 2
<A href="MB03NY.html">
<B>MB03NY</B></A>   The smallest singular value of A - jwI
<A href="MB03OY.html">
<B>MB03OY</B></A>   Matrix rank determination by incremental condition estimation, during 
         the pivoted QR factorization process 
<A href="MB3OYZ.html">
<B>MB3OYZ</B></A>   Matrix rank determination by incremental condition estimation, during 
         the pivoted QR factorization process (complex case) 
<A href="MB03PY.html">
<B>MB03PY</B></A>   Matrix rank determination by incremental condition estimation, during 
         the pivoted RQ factorization process (row pivoting) 
<A href="MB3PYZ.html">
<B>MB3PYZ</B></A>   Matrix rank determination by incremental condition estimation, during 
         the pivoted RQ factorization process (row pivoting, complex case) 
<A href="MB03QV.html">
<B>MB03QV</B></A>   Eigenvalues of an upper quasi-triangular matrix pencil
<A href="MB03QW.html">
<B>MB03QW</B></A>   Standardization and eigenvalues of a 2-by-2 diagonal block pair of
         an upper quasi-triangular matrix pencil
<A href="MB03QX.html">
<B>MB03QX</B></A>   Eigenvalues of an upper quasi-triangular matrix
<A href="MB03QY.html">
<B>MB03QY</B></A>   Transformation to Schur canonical form of a selected 2-by-2 diagonal
         block of an upper quasi-triangular matrix
<A href="MB03RX.html">
<B>MB03RX</B></A>   Reordering the diagonal blocks of a principal submatrix of a real Schur 
         form matrix
<A href="MB03RY.html">
<B>MB03RY</B></A>   Tentative solution of Sylvester equation -AX + XB = C (A, B in real 
         Schur form)
<A href="MB03RW.html">
<B>MB03RW</B></A>   Tentative solution of Sylvester equation -AX + XB = C (A, B in complex
         Schur form)
<A href="MB03TS.html">
<B>MB03TS</B></A>   Swapping two diagonal blocks of a matrix in (skew-)Hamiltonian 
         canonical Schur form
<A href="MB03VY.html">
<B>MB03VY</B></A>   Generating orthogonal matrices for reduction to periodic 
         Hessenberg form of a product of matrices
<A href="MB03WA.html">
<B>MB03WA</B></A>   Swapping two adjacent diagonal blocks in a periodic real Schur canonical form
<A href="MB03WX.html">
<B>MB03WX</B></A>   Eigenvalues of a product of matrices, T = T_1*T_2*...*T_p,
         with T_1 upper quasi-triangular and T_2, ..., T_p upper triangular 
<A href="MB03XS.html">
<B>MB03XS</B></A>   Eigenvalues and real skew-Hamiltonian Schur form of a skew-Hamiltonian matrix
<A href="MB03XU.html">
<B>MB03XU</B></A>   Panel reduction of columns and rows of a real (k+2n)-by-(k+2n) matrix by 
         orthogonal symplectic transformations
<A href="MB03YA.html">
<B>MB03YA</B></A>   Annihilation of one or two entries on the subdiagonal of a Hessenberg matrix 
         corresponding to zero elements on the diagonal of a triangular matrix
<A href="MB03YT.html">
<B>MB03YT</B></A>   Periodic Schur factorization of a real 2-by-2 matrix pair (A,B) 
         with B upper triangular
<A href="MB03ZA.html">
<B>MB03ZA</B></A>   Reordering a selected cluster of eigenvalues of a given matrix pair in 
         periodic Schur form
<A href="MB05MY.html">
<B>MB05MY</B></A>   Computing an orthogonal matrix reducing a matrix to real Schur form T, 
         the eigenvalues, and the upper triangular matrix of right eigenvectors 
         of T 
<A href="MB05OY.html">
<B>MB05OY</B></A>   Restoring a matrix after balancing transformations
</PRE>
<h4>Decompositions and Transformations</h4>
<PRE>
<A href="MB04CD.html">
<B>MB04CD</B></A>   Reducing a special real block (anti-)diagonal skew-Hamiltonian/
         Hamiltonian pencil in factored form to generalized Schur form
<A href="MB04DB.html">
<B>MB04DB</B></A>   Applying the inverse of a balancing transformation for a real 
         skew-Hamiltonian/Hamiltonian matrix pencil
<A href="MB4DBZ.html">
<B>MB4DBZ</B></A>   Applying the inverse of a balancing transformation for a complex 
         skew-Hamiltonian/Hamiltonian matrix pencil
<A href="MB04DD.html">
<B>MB04DD</B></A>   Balancing a real Hamiltonian matrix
<A href="MB04DZ.html">
<B>MB04DZ</B></A>   Balancing a complex Hamiltonian matrix
<A href="MB04DI.html">
<B>MB04DI</B></A>   Applying the inverse of a balancing transformation for a real Hamiltonian matrix
<A href="MB04DS.html">
<B>MB04DS</B></A>   Balancing a real skew-Hamiltonian matrix
<A href="MB04DY.html">
<B>MB04DY</B></A>   Symplectic scaling of a Hamiltonian matrix
<A href="MB04HD.html">
<B>MB04HD</B></A>   Reducing a special real block (anti-)diagonal skew-Hamiltonian/
         Hamiltonian pencil to generalized Schur form
<A href="MB04IY.html">
<B>MB04IY</B></A>   Applying the product of elementary reflectors used for QR factorization
         of a matrix having a lower left zero triangle
<A href="MB04NY.html">
<B>MB04NY</B></A>   Applying an elementary reflector to a matrix C = ( A  B ), from the right, 
         where A has one column
<A href="MB04OY.html">
<B>MB04OY</B></A>   Applying an elementary reflector to a matrix C = ( A'  B' )', from the 
         left, where A has one row
<A href="MB04OW.html">
<B>MB04OW</B></A>   Rank-one update of a Cholesky factorization for a 2-by-2 block matrix
<A href="MB04OX.html">
<B>MB04OX</B></A>   Rank-one update of a Cholesky factorization
<A href="MB04PA.html">
<B>MB04PA</B></A>   Special reduction of a (skew-)Hamiltonian like matrix
<A href="MB04PU.html">
<B>MB04PU</B></A>   Computation of the Paige/Van Loan (PVL) form of a Hamiltonian matrix 
         (unblocked algorithm)
<A href="MB04PY.html">
<B>MB04PY</B></A>   Applying an elementary reflector to a matrix from the left or right
<A href="MB04QB.html">
<B>MB04QB</B></A>   Applying a product of symplectic reflectors and Givens rotations to two 
         general real matrices
<A href="MB04QC.html">
<B>MB04QC</B></A>   Premultiplying a real matrix with an orthogonal symplectic block reflector
<A href="MB04QF.html">
<B>MB04QF</B></A>   Forming the triangular block factors of a symplectic block reflector
<A href="MB04QS.html">
<B>MB04QS</B></A>   Multiplication with a product of symplectic reflectors and Givens rotations
<A href="MB04QU.html">
<B>MB04QU</B></A>   Applying a product of symplectic reflectors and Givens rotations to two 
         general real matrices (unblocked algorithm)
<A href="MB04RB.html">
<B>MB04RB</B></A>   Reduction of a skew-Hamiltonian matrix to Paige/Van Loan (PVL) form 
         (blocked version)
<A href="MB04RU.html">
<B>MB04RU</B></A>   Reduction of a skew-Hamiltonian matrix to Paige/Van Loan (PVL) form 
         (unblocked version)
<A href="MB04RS.html">
<B>MB04RS</B></A>   Solution of a generalized real Sylvester equation with matrix pairs in
         generalized real Schur form
<A href="MB04RV.html">
<B>MB04RV</B></A>   Solution of a generalized complex Sylvester equation with matrix pairs in 
         generalized complex Schur form
<A href="MB04SU.html">
<B>MB04SU</B></A>   Symplectic QR decomposition of a real 2M-by-N matrix
<A href="MB04TS.html">
<B>MB04TS</B></A>   Symplectic URV decomposition of a real 2N-by-2N matrix (unblocked version)
<A href="MB04TU.html">
<B>MB04TU</B></A>   Applying a row-permuted Givens transformation to two row vectors
<A href="MB04WD.html">
<B>MB04WD</B></A>   Generating an orthogonal basis spanning an isotropic subspace
<A href="MB04WP.html">
<B>MB04WP</B></A>   Generating an orthogonal symplectic matrix which performed the reduction 
         in MB04PU
<A href="MB04WR.html">
<B>MB04WR</B></A>   Generating orthogonal symplectic matrices defined as products of symplectic 
         reflectors and Givens rotations
<A href="MB04WU.html">
<B>MB04WU</B></A>   Generating an orthogonal basis spanning an isotropic subspace 
         (unblocked version)
<A href="MB04XY.html">
<B>MB04XY</B></A>   Applying Householder transformations for bidiagonalization (stored 
         in factored form) to one or two matrices, from the left
<A href="MB04YW.html">
<B>MB04YW</B></A>   One QR or QL iteration step onto an unreduced bidiagonal submatrix 
         of a bidiagonal matrix
</PRE>
<h3>MC - Polynomial and Rational Function Manipulation</h3>
<h4>Scalar Polynomials</h4>
<PRE>
<A href="MC01PY.html">
<B>MC01PY</B></A>   Coefficients of a real polynomial, stored in decreasing order, 
         given its zeros         
</PRE>
<h4>Polynomial Matrices</h4>
<PRE>
<A href="MC03NX.html">
<B>MC03NX</B></A>   Construction of a pencil sE-A related to a given polynomial matrix  
</PRE>
<h3>MD - Optimization</h3>
<h4>Unconstrained Nonlinear Least Squares</h4>
<PRE>
<A href="MD03BX.html">
<B>MD03BX</B></A>   QR factorization with column pivoting and error vector 
         transformation
<A href="MD03BY.html">
<B>MD03BY</B></A>   Finding the Levenberg-Marquardt parameter
</PRE>
<HR>
<A NAME="N"><H2>N - Nonlinear Systems</H2></A>
<h3>NF - Wiener Systems</h3>
<h4>Wiener Systems Identification</h4>
<PRE>
<A href="NF01AD.html">
<B>NF01AD</B></A>   Computing the output of a Wiener system  
<A href="NF01AY.html">
<B>NF01AY</B></A>   Computing the output of a set of neural networks
<A href="NF01BD.html">
<B>NF01BD</B></A>   Computing the Jacobian of a Wiener system  
<A href="NF01BP.html">
<B>NF01BP</B></A>   Finding the Levenberg-Marquardt parameter
<A href="NF01BQ.html">
<B>NF01BQ</B></A>   Solution of the linear system J*x = b, D*x = 0, D diagonal
<A href="NF01BR.html">
<B>NF01BR</B></A>   Solution of the linear system op(R)*x = b, R block upper 
         triangular stored in a compressed form
<A href="NF01BS.html">
<B>NF01BS</B></A>   QR factorization of a structured Jacobian matrix
<A href="NF01BU.html">
<B>NF01BU</B></A>   Computing J'*J + c*I, for the Jacobian J given in a
         compressed form
<A href="NF01BV.html">
<B>NF01BV</B></A>   Computing J'*J + c*I, for a full Jacobian J (one output
         variable)
<A href="NF01BW.html">
<B>NF01BW</B></A>   Matrix-vector product x <-- (J'*J + c*I)*x, for J in a
         compressed form
<A href="NF01BX.html">
<B>NF01BX</B></A>   Matrix-vector product x <-- (A'*A + c*I)*x, for a
         full matrix A
<A href="NF01BY.html">
<B>NF01BY</B></A>   Computing the Jacobian of the error function for a neural 
         network (for one output variable)
</PRE>
<HR>
<A NAME="S"><H2>S - Synthesis Routines</H2></A>
<h3>SB - State-Space Synthesis</h3>
<h4>Eigenvalue/Eigenvector Assignment</h4>
<PRE>
<A href="SB01BX.html">
<B>SB01BX</B></A>   Choosing the closest real (complex conjugate) eigenvalue(s) to
         a given real (complex) value
<A href="SB01BY.html">
<B>SB01BY</B></A>   Pole placement for systems of order 1 or 2
<A href="SB01FY.html">
<B>SB01FY</B></A>   Inner denominator of a right-coprime factorization of an unstable system
         of order 1 or 2
</PRE>
<h4>Riccati Equations</h4>
<PRE>
<A href="SB02MU.html">
<B>SB02MU</B></A>   Constructing the 2n-by-2n Hamiltonian or symplectic matrix for
         linear-quadratic optimization problems
<A href="SB02RU.html">
<B>SB02RU</B></A>   Constructing the 2n-by-2n Hamiltonian or symplectic matrix for
         linear-quadratic optimization problems (efficient and accurate
         version of SB02MU)
<A href="SB02OY.html">
<B>SB02OY</B></A>   Constructing and compressing the extended Hamiltonian or symplectic 
         matrix pairs for linear-quadratic optimization problems
</PRE>
<h4>Lyapunov Equations</h4>
<PRE>
<A href="SB03MV.html">
<B>SB03MV</B></A>   Solving a discrete-time Lyapunov equation for a 2-by-2 matrix
<A href="SB03MW.html">
<B>SB03MW</B></A>   Solving a continuous-time Lyapunov equation for a 2-by-2 matrix
<A href="SB03MX.html">
<B>SB03MX</B></A>   Solving a discrete-time Lyapunov equation with matrix A quasi-triangular
<A href="SB03MY.html">
<B>SB03MY</B></A>   Solving a continuous-time Lyapunov equation with matrix A quasi-triangular
<A href="SB03OT.html">
<B>SB03OT</B></A>   Solving (for Cholesky factor) stable continuous- or discrete-time 
         Lyapunov equations, with A quasi-triangular and R triangular
<A href="SB03OS.html">
<B>SB03OS</B></A>   Solving (for Cholesky factor) stable continuous- or discrete-time 
         complex Lyapunov equations, with matrices S and R triangular
<A href="SB03OU.html">
<B>SB03OU</B></A>   Solving (for Cholesky factor) stable continuous- or discrete-time 
         Lyapunov equations, with A in real Schur form and B rectangular
<A href="SB03OY.html">
<B>SB03OY</B></A>   Solving (for Cholesky factor) stable 2-by-2 continuous- or discrete-time
         Lyapunov equations, with matrix A having complex conjugate eigenvalues
<A href="SB03QX.html">
<B>SB03QX</B></A>   Forward error bound for continuous-time Lyapunov equations
<A href="SB03QY.html">
<B>SB03QY</B></A>   Separation and Theta norm for continuous-time Lyapunov equations
<A href="SB03SX.html">
<B>SB03SX</B></A>   Forward error bound for discrete-time Lyapunov equations
<A href="SB03SY.html">
<B>SB03SY</B></A>   Separation and Theta norm for discrete-time Lyapunov equations
</PRE>
<h4>Sylvester Equations</h4>
<PRE>
<A href="SB03MU.html">
<B>SB03MU</B></A>   Solving a discrete-time Sylvester equation for an m-by-n matrix X, 
         1 <= m,n <= 2
<A href="SB03OR.html">
<B>SB03OR</B></A>   Solving quasi-triangular continuous- or discrete-time Sylvester equations, 
         for an n-by-m matrix X, 1 <= m <= 2
<A href="SB04MR.html">
<B>SB04MR</B></A>   Solving a linear algebraic system whose coefficient matrix (stored 
         compactly) has zeros below the second subdiagonal
<A href="SB04MU.html">
<B>SB04MU</B></A>   Constructing and solving a linear algebraic system whose coefficient 
         matrix (stored compactly) has zeros below the second subdiagonal 
<A href="SB04MW.html">
<B>SB04MW</B></A>   Solving a linear algebraic system whose coefficient matrix (stored 
         compactly) has zeros below the first subdiagonal
<A href="SB04MY.html">
<B>SB04MY</B></A>   Constructing and solving a linear algebraic system whose coefficient 
         matrix (stored compactly) has zeros below the first subdiagonal
<A href="SB04NV.html">
<B>SB04NV</B></A>   Constructing right-hand sides for a system of equations in 
         Hessenberg form solved via SB04NX
<A href="SB04NW.html">
<B>SB04NW</B></A>   Constructing the right-hand side for a system of equations in 
         Hessenberg form solved via SB04NY 
<A href="SB04NX.html">
<B>SB04NX</B></A>   Solving a system of equations in Hessenberg form with two consecutive 
         offdiagonals and two right-hand sides 
<A href="SB04NY.html">
<B>SB04NY</B></A>   Solving a system of equations in Hessenberg form with one offdiagonal 
         and one right-hand side 
<A href="SB04OW.html">
<B>SB04OW</B></A>   Solving a periodic Sylvester equation with matrices in periodic Schur form
<A href="SB04PX.html">
<B>SB04PX</B></A>   Solving a discrete-time Sylvester equation for matrices of order <= 2
<A href="SB04PY.html">
<B>SB04PY</B></A>   Solving a discrete-time Sylvester equation with matrices in Schur form
<A href="SB04QR.html">
<B>SB04QR</B></A>   Solving a linear algebraic system whose coefficient matrix (stored 
         compactly) has zeros below the third subdiagonal
<A href="SB04QU.html">
<B>SB04QU</B></A>   Constructing and solving a linear algebraic system whose coefficient 
         matrix (stored compactly) has zeros below the third subdiagonal
<A href="SB04QY.html">
<B>SB04QY</B></A>   Constructing and solving a linear algebraic system whose coefficient 
         matrix (stored compactly) has zeros below the first subdiagonal
         (discrete-time case)
<A href="SB04RV.html">
<B>SB04RV</B></A>   Constructing right-hand sides for a system of equations in 
         Hessenberg form solved via SB04RX
<A href="SB04RW.html">
<B>SB04RW</B></A>   Constructing the right-hand side for a system of equations in 
         Hessenberg form solved via SB04RY 
<A href="SB04RX.html">
<B>SB04RX</B></A>   Solving a system of equations in Hessenberg form with two consecutive 
         offdiagonals and two right-hand sides (discrete-time case) 
<A href="SB04RY.html">
<B>SB04RY</B></A>   Solving a system of equations in Hessenberg form with one offdiagonal 
         and one right-hand side (discrete-time case) 
</PRE>
<h4>Optimal Regulator Problems</h4>
<PRE>
<A href="SB10JD.html">
<B>SB10JD</B></A>    Conversion of a descriptor state-space system into regular 
          state-space form
<A href="SB10LD.html">
<B>SB10LD</B></A>    Closed-loop system matrices for a system with robust controller
<A href="SB10PD.html">
<B>SB10PD</B></A>    Normalization of a system for H-infinity controller design
<A href="SB10QD.html">
<B>SB10QD</B></A>    State feedback and output injection matrices for an H-infinity
          (sub)optimal state controller (continuous-time)
<A href="SB10RD.html">
<B>SB10RD</B></A>    H-infinity (sub)optimal controller matrices using state feedback
          and output injection matrices (continuous-time)
<A href="SB10SD.html">
<B>SB10SD</B></A>    H2 optimal controller matrices for a normalized discrete-time system
<A href="SB10TD.html">
<B>SB10TD</B></A>    H2 optimal controller matrices for a discrete-time system
<A href="SB10UD.html">
<B>SB10UD</B></A>    Normalization of a system for H2 controller design
<A href="SB10VD.html">
<B>SB10VD</B></A>    State feedback and output injection matrices for an H2 optimal
          state controller (continuous-time)
<A href="SB10WD.html">
<B>SB10WD</B></A>    H2 optimal controller matrices using state feedback and
          output injection matrices (continuous-time)
<A href="SB10YD.html">
<B>SB10YD</B></A>    Fitting frequency response data with a stable, minimum phase
          SISO system
<A href="SB10ZP.html">
<B>SB10ZP</B></A>    Transforming a SISO system into a stable and minimum phase one
</PRE>
<h4>Controller Reduction</h4>
<PRE>
<A href="SB16AY.html">
<B>SB16AY</B></A>    Cholesky factors of the frequency-weighted controllability and 
          observability Grammians for controller reduction
<A href="SB16CY.html">
<B>SB16CY</B></A>    Cholesky factors of controllability and observability Grammians
          of coprime factors of a state-feedback controller
</PRE>
<h3>SG - Generalized State-Space Synthesis</h3>
<h4>Generalized Lyapunov Equations</h4>
<PRE>
<A href="SG02CV.html">
<B>SG02CV</B></A>   Computation of residual matrix for a continuous-time or discrete-time 
         reduced Lyapunov equation
<A href="SG03AX.html">
<B>SG03AX</B></A>   Solving a generalized discrete-time Lyapunov equation with 
         A quasi-triangular and E upper triangular
<A href="SG03AY.html">
<B>SG03AY</B></A>   Solving a generalized continuous-time Lyapunov equation with 
         A quasi-triangular and E upper triangular
<A href="SG03BU.html">
<B>SG03BU</B></A>   Solving (for Cholesky factor) stable generalized discrete-time 
         Lyapunov equations with A quasi-triangular, and E, B upper triangular
<A href="SG03BS.html">
<B>SG03BS</B></A>   Solving (for Cholesky factor) stable generalized discrete-time 
         complex Lyapunov equations with A, E, and B upper triangular
<A href="SG03BV.html">
<B>SG03BV</B></A>   Solving (for Cholesky factor) stable generalized continuous-time 
         Lyapunov equations with A quasi-triangular, and E, B upper triangular
<A href="SG03BT.html">
<B>SG03BT</B></A>   Solving (for Cholesky factor) stable generalized continuous-time 
         complex Lyapunov equations with A, E, and B upper triangular
<A href="SG03BX.html">
<B>SG03BX</B></A>   Solving (for Cholesky factor) stable generalized 2-by-2 Lyapunov equations
</PRE>
<h4>Generalized Sylvester Equations</h4>
<PRE>
<A href="SG03BW.html">
<B>SG03BW</B></A>   Solving a generalized Sylvester equation with A quasi-triangular 
         and E upper triangular, for X m-by-n, n = 1 or 2
</PRE>
<HR>
<A NAME="T"><H2>T - Transformation Routines</H2></A>
<h3>TB - State-Space</h3>
<h4>State-Space Transformations</h4>
<PRE>
<A href="TB01KX.html">
<B>TB01KX</B></A>   Additive spectral decomposition of the transfer-function matrix of a standard system
<A href="TB01UX.html">
<B>TB01UX</B></A>   Observable-unobservable decomposition of a standard system
<A href="TB01VD.html">
<B>TB01VD</B></A>   Conversion of a discrete-time system to output normal form
<A href="TB01VY.html">
<B>TB01VY</B></A>   Conversion of the output normal form of a discrete-time system 
         to a state-space representation
<A href="TB01XD.html">
<B>TB01XD</B></A>   Special similarity transformation of the dual state-space system
<A href="TB01XZ.html">
<B>TB01XZ</B></A>   Special similarity transformation of the dual state-space system 
         (complex case)
<A href="TB01YD.html">
<B>TB01YD</B></A>   Special similarity transformation of a state-space system 
</PRE>
<h4>State-Space to Rational Matrix Conversion</h4>
<PRE>
<A href="TB04BV.html">
<B>TB04BV</B></A>   Strictly proper part of a proper transfer function matrix 
<A href="TB04BW.html">
<B>TB04BW</B></A>   Sum of a rational matrix and a real matrix 
<A href="TB04BX.html">
<B>TB04BX</B></A>   Gain of a SISO linear system, given (A,b,c,d), its poles and zeros
</PRE>
<h3>TC - Polynomial Matrix</h3>
<h3>TD - Rational  Matrix</h3>
<h3>TF - Time Response</h3>
<PRE>
<A href="TF01MX.html">
<B>TF01MX</B></A>   Output response of a linear discrete-time system, given a 
         general system matrix (each output is a column of the result)
<A href="TF01MY.html">
<B>TF01MY</B></A>   Output response of a linear discrete-time system, given the
         system matrices (each output is a column of the result)
</PRE>
<h3>TG - Generalized State-space</h3>
<h4>Generalized State-space Transformations</h4>
<PRE>
<A href="TG01HU.html">
<B>TG01HU</B></A>   Staircase controllability representation of a multi-input descriptor system
<A href="TG01HX.html">
<B>TG01HX</B></A>   Orthogonal reduction of a descriptor system to a system with
         the same transfer-function matrix and without uncontrollable finite 
         eigenvalues
<A href="TG01HY.html">
<B>TG01HY</B></A>   Orthogonal reduction of a descriptor system to a system with
         the same transfer-function matrix and without uncontrollable finite 
         eigenvalues (blocked version)
<A href="TG01KD.html">
<B>TG01KD</B></A>   Orthogonal equivalence transformation of a SISO descriptor system
         with E upper triangular (TG01OA version with more complex interface)
<A href="TG01KZ.html">
<B>TG01KZ</B></A>   Unitary equivalence transformation of a complex SISO descriptor system
         with E upper triangular (TG01OB version with more complex interface)
<A href="TG01LY.html">
<B>TG01LY</B></A>   Finite-infinite decomposition of a structured descriptor system
<A href="TG01NX.html">
<B>TG01NX</B></A>   Block-diagonal decomposition of a descriptor system in 
         generalized real Schur form
<A href="TG01OA.html">
<B>TG01OA</B></A>   Orthogonal equivalence transformation of a SISO descriptor system
         with E upper triangular, so that B becomes parallel to the first unit vector
         and E keeps its structure
<A href="TG01OB.html">
<B>TG01OB</B></A>   Unitary equivalence transformation of a complex SISO descriptor system
         with E upper triangular, so that B becomes parallel to the first unit vector
         and E keeps its structure
</PRE>
<HR>
<A NAME="U"><H2>U - Utility Routines</H2></A>
<h3>UD - Numerical Data Handling</h3>
<HR>
</BODY>
</HTML>