control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>SB03MY - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB03MY">SB03MY</A></H2>
<H3>
Solving a continuous-time Lyapunov equation with matrix A quasi-triangular
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve the real Lyapunov matrix equation

         op(A)'*X + X*op(A) = scale*C

  where op(A) = A or A' (A**T), A is upper quasi-triangular and C is
  symmetric (C = C'). (A' denotes the transpose of the matrix A.)
  A is N-by-N, the right hand side C and the solution X are N-by-N,
  and scale is an output scale factor, set less than or equal to 1
  to avoid overflow in X. The solution matrix X is overwritten
  onto C.

  A must be in Schur canonical form (as returned by LAPACK routines
  DGEES or DHSEQR), that is, block upper triangular with 1-by-1 and
  2-by-2 diagonal blocks; each 2-by-2 diagonal block has its
  diagonal elements equal and its off-diagonal elements of opposite
  sign.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB03MY( TRANA, N, A, LDA, C, LDC, SCALE, INFO )
C     .. Scalar Arguments ..
      CHARACTER          TRANA
      INTEGER            INFO, LDA, LDC, N
      DOUBLE PRECISION   SCALE
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  TRANA   CHARACTER*1
          Specifies the form of op(A) to be used, as follows:
          = 'N':  op(A) = A    (No transpose);
          = 'T':  op(A) = A**T (Transpose);
          = 'C':  op(A) = A**T (Conjugate transpose = Transpose).

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices A, X, and C.  N &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          upper quasi-triangular matrix A, in Schur canonical form.
          The part of A below the first sub-diagonal is not
          referenced.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading N-by-N part of this array must
          contain the symmetric matrix C.
          On exit, if INFO &gt;= 0, the leading N-by-N part of this
          array contains the symmetric solution matrix X.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,N).

  SCALE   (output) DOUBLE PRECISION
          The scale factor, scale, set less than or equal to 1 to
          prevent the solution overflowing.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if A and -A have common or very close eigenvalues;
                perturbed values were used to solve the equation
                (but the matrix A is unchanged).

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Bartels-Stewart algorithm is used. A set of equivalent linear
  algebraic systems of equations of order at most four are formed
  and solved using Gaussian elimination with complete pivoting.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Bartels, R.H. and Stewart, G.W.  T
      Solution of the matrix equation A X + XB = C.
      Comm. A.C.M., 15, pp. 820-826, 1972.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                            3
  The algorithm requires 0(N ) operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>