<HTML>
<HEAD><TITLE>MB04OY - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04OY">MB04OY</A></H2>
<H3>
Applying an elementary reflector (using in-line code for a low order) to a matrix C = trans( trans(A) trans(B) ), from the left, where A has one row
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To apply a real elementary reflector H to a real (m+1)-by-n
matrix C = [ A ], from the left, where A has one row. H is
[ B ]
represented in the form
( 1 )
H = I - tau * u *u', u = ( ),
( v )
where tau is a real scalar and v is a real m-vector.
If tau = 0, then H is taken to be the unit matrix.
In-line code is used if H has order < 11.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04OY( M, N, V, TAU, A, LDA, B, LDB, DWORK )
C .. Scalar Arguments ..
INTEGER LDA, LDB, M, N
DOUBLE PRECISION TAU
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ), V( * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrix B. M >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
V (input) DOUBLE PRECISION array, dimension (M)
The vector v in the representation of H.
TAU (input) DOUBLE PRECISION
The scalar factor of the elementary reflector H.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading 1-by-N part of this array must
contain the matrix A.
On exit, the leading 1-by-N part of this array contains
the updated matrix A (the first row of H * C).
LDA INTEGER
The leading dimension of array A. LDA >= 1.
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the leading M-by-N part of this array must
contain the matrix B.
On exit, the leading M-by-N part of this array contains
the updated matrix B (the last m rows of H * C).
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,M).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (N)
DWORK is not referenced if H has order less than 11.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine applies the elementary reflector H, taking the special
structure of C into account.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>