control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>SB04NX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB04NX">SB04NX</A></H2>
<H3>
Solving a system of equations in Hessenberg form with two consecutive offdiagonals and two right-hand sides
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve a system of equations in Hessenberg form with two
  consecutive offdiagonals and two right-hand sides.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB04NX( RC, UL, M, A, LDA, LAMBD1, LAMBD2, LAMBD3,
     $                   LAMBD4, D, TOL, IWORK, DWORK, LDDWOR, INFO )
C     .. Scalar Arguments ..
      CHARACTER         RC, UL
      INTEGER           INFO, LDA, LDDWOR, M
      DOUBLE PRECISION  LAMBD1, LAMBD2, LAMBD3, LAMBD4, TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), D(*), DWORK(LDDWOR,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  RC      CHARACTER*1
          Indicates processing by columns or rows, as follows:
          = 'R':  Row transformations are applied;
          = 'C':  Column transformations are applied.

  UL      CHARACTER*1
          Indicates whether AB is upper or lower Hessenberg matrix,
          as follows:
          = 'U':  AB is upper Hessenberg;
          = 'L':  AB is lower Hessenberg.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The order of the matrix A.  M &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,M)
          The leading M-by-M part of this array must contain a
          matrix A in Hessenberg form.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,M).

  LAMBD1, (input) DOUBLE PRECISION
  LAMBD2, These variables must contain the 2-by-2 block to be added
  LAMBD3, to the diagonal blocks of A.
  LAMBD4

  D       (input/output) DOUBLE PRECISION array, dimension (2*M)
          On entry, this array must contain the two right-hand
          side vectors of the Hessenberg system, stored row-wise.
          On exit, if INFO = 0, this array contains the two solution
          vectors of the Hessenberg system, stored row-wise.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          The tolerance to be used to test for near singularity of
          the triangular factor R of the Hessenberg matrix. A matrix
          whose estimated condition number is less than 1/TOL is
          considered to be nonsingular.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (2*M)

  DWORK   DOUBLE PRECISION array, dimension (LDDWOR,2*M+3)
          The leading 2*M-by-2*M part of this array is used for
          computing the triangular factor of the QR decomposition
          of the Hessenberg matrix. The remaining 6*M elements are
          used as workspace for the computation of the reciprocal
          condition estimate.

  LDDWOR  INTEGER
          The leading dimension of array DWORK.
          LDDWOR &gt;= MAX(1,2*M).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          = 1:  if the Hessenberg matrix is (numerically) singular.
                That is, its estimated reciprocal condition number
                is less than or equal to TOL.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>