<HTML>
<HEAD><TITLE>BB01AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="BB01AD">BB01AD</A></H2>
<H3>
Benchmark examples for continuous-time algebraic Riccati equations
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To generate the benchmark examples for the numerical solution of
continuous-time algebraic Riccati equations (CAREs) of the form
0 = Q + A'X + XA - XGX
corresponding to the Hamiltonian matrix
( A G )
H = ( T ).
( Q -A )
A,G,Q,X are real N-by-N matrices, Q and G are symmetric and may
be given in factored form
-1 T T
(I) G = B R B , (II) Q = C W C .
Here, C is P-by-N, W P-by-P, B N-by-M, and R M-by-M, where W
and R are symmetric. In linear-quadratic optimal control problems,
usually W is positive semidefinite and R positive definite. The
factorized form can be used if the CARE is solved using the
deflating subspaces of the extended Hamiltonian pencil
( A 0 B ) ( I 0 0 )
( T ) ( )
H - s K = ( Q A 0 ) - s ( 0 -I 0 ) ,
( T ) ( )
( 0 B R ) ( 0 0 0 )
where I and 0 denote the identity and zero matrix, respectively,
of appropriate dimensions.
NOTE: the formulation of the CARE and the related matrix (pencils)
used here does not include CAREs as they arise in robust
control (H_infinity optimization).
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE BB01AD(DEF, NR, DPAR, IPAR, BPAR, CHPAR, VEC, N, M, P,
1 A, LDA, B, LDB, C, LDC, G, LDG, Q, LDQ, X, LDX,
2 DWORK, LDWORK, INFO)
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDG, LDQ, LDWORK, LDX, M, N,
$ P
CHARACTER DEF
C .. Array Arguments ..
INTEGER IPAR(4), NR(2)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DPAR(*), DWORK(*),
1 G(*), Q(*), X(LDX,*)
CHARACTER CHPAR*(*)
LOGICAL BPAR(6), VEC(9)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DEF CHARACTER
This parameter specifies if the default parameters are
to be used or not.
= 'N' or 'n' : The parameters given in the input vectors
xPAR (x = 'D', 'I', 'B', 'CH') are used.
= 'D' or 'd' : The default parameters for the example
are used.
This parameter is not meaningful if NR(1) = 1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
NR (input) INTEGER array, dimension (2)
This array determines the example for which CAREX returns
data. NR(1) is the group of examples.
NR(1) = 1 : parameter-free problems of fixed size.
NR(1) = 2 : parameter-dependent problems of fixed size.
NR(1) = 3 : parameter-free problems of scalable size.
NR(1) = 4 : parameter-dependent problems of scalable size.
NR(2) is the number of the example in group NR(1).
Let NEXi be the number of examples in group i. Currently,
NEX1 = 6, NEX2 = 9, NEX3 = 2, NEX4 = 4.
1 <= NR(1) <= 4;
1 <= NR(2) <= NEXi , where i = NR(1).
DPAR (input/output) DOUBLE PRECISION array, dimension (7)
Double precision parameter vector. For explanation of the
parameters see [1].
DPAR(1) : defines the parameters
'delta' for NR(1) = 3,
'q' for NR(1).NR(2) = 4.1,
'a' for NR(1).NR(2) = 4.2, and
'mu' for NR(1).NR(2) = 4.3.
DPAR(2) : defines parameters
'r' for NR(1).NR(2) = 4.1,
'b' for NR(1).NR(2) = 4.2, and
'delta' for NR(1).NR(2) = 4.3.
DPAR(3) : defines parameters
'c' for NR(1).NR(2) = 4.2 and
'kappa' for NR(1).NR(2) = 4.3.
DPAR(j), j=4,5,6,7: These arguments are only used to
generate Example 4.2 and define in
consecutive order the intervals
['beta_1', 'beta_2'],
['gamma_1', 'gamma_2'].
NOTE that if DEF = 'D' or 'd', the values of DPAR entries
on input are ignored and, on output, they are overwritten
with the default parameters.
IPAR (input/output) INTEGER array, dimension (4)
On input, IPAR(1) determines the actual state dimension,
i.e., the order of the matrix A as follows, where
NO = NR(1).NR(2).
NR(1) = 1 or 2.1-2.8: IPAR(1) is ignored.
NO = 2.9 : IPAR(1) = 1 generates the CARE for
optimal state feedback (default);
IPAR(1) = 2 generates the Kalman
filter CARE.
NO = 3.1 : IPAR(1) is the number of vehicles
(parameter 'l' in the description
in [1]).
NO = 3.2, 4.1 or 4.2: IPAR(1) is the order of the matrix
A.
NO = 4.3 or 4.4 : IPAR(1) determines the dimension of
the second-order system, i.e., the
order of the stiffness matrix for
Examples 4.3 and 4.4 (parameter 'l'
in the description in [1]).
The order of the output matrix A is N = 2*IPAR(1) for
Example 4.3 and N = 2*IPAR(1)-1 for Examples 3.1 and 4.4.
NOTE that IPAR(1) is overwritten for Examples 1.1-2.8. For
the other examples, IPAR(1) is overwritten if the default
parameters are to be used.
On output, IPAR(1) contains the order of the matrix A.
On input, IPAR(2) is the number of colums in the matrix B
in (I) (in control problems, the number of inputs of the
system). Currently, IPAR(2) is fixed or determined by
IPAR(1) for all examples and thus is not referenced on
input.
On output, IPAR(2) is the number of columns of the
matrix B from (I).
NOTE that currently IPAR(2) is overwritten and that
rank(G) <= IPAR(2).
On input, IPAR(3) is the number of rows in the matrix C
in (II) (in control problems, the number of outputs of the
system). Currently, IPAR(3) is fixed or determined by
IPAR(1) for all examples and thus is not referenced on
input.
On output, IPAR(3) contains the number of rows of the
matrix C in (II).
NOTE that currently IPAR(3) is overwritten and that
rank(Q) <= IPAR(3).
On input, if NR(1) = NR(2) = 4, and other data file than
that used by default is desired, then IPAR(4) is the
length of the character string in CHPAR specifying the
file name.
BPAR (input) BOOLEAN array, dimension (6)
This array defines the form of the output of the examples
and the storage mode of the matrices G and Q.
BPAR(1) = .TRUE. : G is returned.
BPAR(1) = .FALSE. : G is returned in factored form, i.e.,
B and R from (I) are returned.
BPAR(2) = .TRUE. : The matrix returned in array G (i.e.,
G if BPAR(1) = .TRUE. and R if
BPAR(1) = .FALSE.) is stored as full
matrix.
BPAR(2) = .FALSE. : The matrix returned in array G is
provided in packed storage mode.
BPAR(3) = .TRUE. : If BPAR(2) = .FALSE., the matrix
returned in array G is stored in upper
packed mode, i.e., the upper triangle
of a symmetric n-by-n matrix is stored
by columns, e.g., the matrix entry
G(i,j) is stored in the array entry
G(i+j*(j-1)/2) for i <= j.
Otherwise, this entry is ignored.
BPAR(3) = .FALSE. : If BPAR(2) = .FALSE., the matrix
returned in array G is stored in lower
packed mode, i.e., the lower triangle
of a symmetric n-by-n matrix is stored
by columns, e.g., the matrix entry
G(i,j) is stored in the array entry
G(i+(2*n-j)*(j-1)/2) for j <= i.
Otherwise, this entry is ignored.
BPAR(4) = .TRUE. : Q is returned.
BPAR(4) = .FALSE. : Q is returned in factored form, i.e.,
C and W from (II) are returned.
BPAR(5) = .TRUE. : The matrix returned in array Q (i.e.,
Q if BPAR(4) = .TRUE. and W if
BPAR(4) = .FALSE.) is stored as full
matrix.
BPAR(5) = .FALSE. : The matrix returned in array Q is
provided in packed storage mode.
BPAR(6) = .TRUE. : If BPAR(5) = .FALSE., the matrix
returned in array Q is stored in upper
packed mode (see above).
Otherwise, this entry is ignored.
BPAR(6) = .FALSE. : If BPAR(5) = .FALSE., the matrix
returned in array Q is stored in lower
packed mode (see above).
Otherwise, this entry is ignored.
NOTE that there are no default values for BPAR. If all
entries are declared to be .TRUE., then matrices G and Q
are returned in conventional storage mode, i.e., as
N-by-N arrays where the array element Z(I,J) contains the
matrix entry Z_{i,j}.
CHPAR (input/output) CHARACTER*255
On input, this is the name of a data file supplied by the
user.
In the current version, only Example 4.4 allows a
user-defined data file. This file must contain
consecutively DOUBLE PRECISION vectors mu, delta, gamma,
and kappa. The length of these vectors is determined by
the input value for IPAR(1).
If on entry, IPAR(1) = L, then mu and delta must each
contain L DOUBLE PRECISION values, and gamma and kappa
must each contain L-1 DOUBLE PRECISION values.
On output, this string contains short information about
the chosen example.
VEC (output) LOGICAL array, dimension (9)
Flag vector which displays the availability of the output
data:
VEC(j), j=1,2,3, refer to N, M, and P, respectively, and
are always .TRUE.
VEC(4) refers to A and is always .TRUE.
VEC(5) is .TRUE. if BPAR(1) = .FALSE., i.e., the factors B
and R from (I) are returned.
VEC(6) is .TRUE. if BPAR(4) = .FALSE., i.e., the factors C
and W from (II) are returned.
VEC(7) refers to G and is always .TRUE.
VEC(8) refers to Q and is always .TRUE.
VEC(9) refers to X and is .TRUE. if the exact solution
matrix is available.
NOTE that VEC(i) = .FALSE. for i = 1 to 9 if on exit
INFO .NE. 0.
N (output) INTEGER
The order of the matrices A, X, G if BPAR(1) = .TRUE., and
Q if BPAR(4) = .TRUE.
M (output) INTEGER
The number of columns in the matrix B (or the dimension of
the control input space of the underlying dynamical
system).
P (output) INTEGER
The number of rows in the matrix C (or the dimension of
the output space of the underlying dynamical system).
A (output) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array contains the
coefficient matrix A of the CARE.
LDA INTEGER
The leading dimension of array A. LDA >= N.
B (output) DOUBLE PRECISION array, dimension (LDB,M)
If (BPAR(1) = .FALSE.), then the leading N-by-M part of
this array contains the matrix B of the factored form (I)
of G. Otherwise, B is used as workspace.
LDB INTEGER
The leading dimension of array B. LDB >= N.
C (output) DOUBLE PRECISION array, dimension (LDC,N)
If (BPAR(4) = .FALSE.), then the leading P-by-N part of
this array contains the matrix C of the factored form (II)
of Q. Otherwise, C is used as workspace.
LDC INTEGER
The leading dimension of array C.
LDC >= P, where P is the number of rows of the matrix C,
i.e., the output value of IPAR(3). (For all examples,
P <= N, where N equals the output value of the argument
IPAR(1), i.e., LDC >= LDA is always safe.)
G (output) DOUBLE PRECISION array, dimension (NG)
If (BPAR(2) = .TRUE.) then NG = LDG*N.
If (BPAR(2) = .FALSE.) then NG = N*(N+1)/2.
If (BPAR(1) = .TRUE.), then array G contains the
coefficient matrix G of the CARE.
If (BPAR(1) = .FALSE.), then array G contains the 'control
weighting matrix' R of G's factored form as in (I). (For
all examples, M <= N.) The symmetric matrix contained in
array G is stored according to BPAR(2) and BPAR(3).
LDG INTEGER
If conventional storage mode is used for G, i.e.,
BPAR(2) = .TRUE., then G is stored like a 2-dimensional
array with leading dimension LDG. If packed symmetric
storage mode is used, then LDG is not referenced.
LDG >= N if BPAR(2) = .TRUE..
Q (output) DOUBLE PRECISION array, dimension (NQ)
If (BPAR(5) = .TRUE.) then NQ = LDQ*N.
If (BPAR(5) = .FALSE.) then NQ = N*(N+1)/2.
If (BPAR(4) = .TRUE.), then array Q contains the
coefficient matrix Q of the CARE.
If (BPAR(4) = .FALSE.), then array Q contains the 'output
weighting matrix' W of Q's factored form as in (II).
The symmetric matrix contained in array Q is stored
according to BPAR(5) and BPAR(6).
LDQ INTEGER
If conventional storage mode is used for Q, i.e.,
BPAR(5) = .TRUE., then Q is stored like a 2-dimensional
array with leading dimension LDQ. If packed symmetric
storage mode is used, then LDQ is not referenced.
LDQ >= N if BPAR(5) = .TRUE..
X (output) DOUBLE PRECISION array, dimension (LDX,IPAR(1))
If an exact solution is available (NR = 1.1, 1.2, 2.1,
2.3-2.6, 3.2), then the leading N-by-N part of this array
contains the solution matrix X in conventional storage
mode. Otherwise, X is not referenced.
LDX INTEGER
The leading dimension of array X. LDX >= 1, and
LDX >= N if NR = 1.1, 1.2, 2.1, 2.3-2.6, 3.2.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= N*MAX(4,N).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0 : successful exit;
< 0 : if INFO = -i, the i-th argument had an illegal
value;
= 1 : data file could not be opened or had wrong format;
= 2 : division by zero;
= 3 : G can not be computed as in (I) due to a singular R
matrix.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Abels, J. and Benner, P.
CAREX - A Collection of Benchmark Examples for Continuous-Time
Algebraic Riccati Equations (Version 2.0).
SLICOT Working Note 1999-14, November 1999. Available from
http://www.win.tue.nl/niconet/NIC2/reports.html.
This is an updated and extended version of
[2] Benner, P., Laub, A.J., and Mehrmann, V.
A Collection of Benchmark Examples for the Numerical Solution
of Algebraic Riccati Equations I: Continuous-Time Case.
Technical Report SPC 95_22, Fak. f. Mathematik,
TU Chemnitz-Zwickau (Germany), October 1995.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
If the original data as taken from the literature is given via
matrices G and Q, but factored forms are requested as output, then
these factors are obtained from Cholesky or LDL' decompositions of
G and Q, i.e., the output data will be corrupted by roundoff
errors.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
Some benchmark examples read data from the data files provided
with the collection.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* BB01AD EXAMPLE PROGRAM TEXT
*
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX, PMAX
PARAMETER ( MMAX = 100, NMAX = 100, PMAX = 100 )
INTEGER LDA, LDB, LDC, LDG, LDQ, LDX
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDG = NMAX, LDQ = NMAX, LDX = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX*MAX( 4, NMAX ) )
* .. Local Scalars ..
CHARACTER DEF
INTEGER I, INFO, ISYMM, J, LBPAR, LDPAR, LIPAR, M, N, P
* .. Local Arrays ..
DOUBLE PRECISION A(LDA, NMAX), B(LDB,MMAX), C(LDC, NMAX),
$ DPAR(7), DWORK(LDWORK), G(LDG, NMAX),
$ Q(LDQ, NMAX), X(LDX, NMAX)
INTEGER IPAR(4), NR(2)
LOGICAL BPAR(6), VEC(9)
CHARACTER CHPAR*255
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL BB01AD, MA02DD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
WRITE( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ( NIN, FMT = '()' )
READ( NIN, FMT = * ) DEF
READ( NIN, FMT = * ) ( NR(I), I = 1, 2 )
IF( LSAME( DEF, 'N' ) ) THEN
READ( NIN, FMT = * ) LBPAR
IF( LBPAR.GT.0 ) READ( NIN, FMT = * ) ( BPAR(I), I = 1, LBPAR )
READ( NIN, FMT = * ) LDPAR
IF( LDPAR.GT.0 ) READ( NIN, FMT = * ) ( DPAR(I), I = 1, LDPAR )
READ( NIN, FMT = * ) LIPAR
IF( LIPAR.GT.0 ) READ( NIN, FMT = * ) ( IPAR(I), I = 1, LIPAR )
END IF
* Generate benchmark example
CALL BB01AD( DEF, NR, DPAR, IPAR, BPAR, CHPAR, VEC, N, M, P, A,
$ LDA, B, LDB, C, LDC, G, LDG, Q, LDQ, X, LDX, DWORK,
$ LDWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE( NOUT, FMT = 99998 ) INFO
ELSE
WRITE( NOUT, FMT = * ) CHPAR(1:70)
WRITE( NOUT, FMT = 99997 ) N
WRITE( NOUT, FMT = 99996 ) M
WRITE( NOUT, FMT = 99995 ) P
WRITE( NOUT, FMT = 99994 )
DO 10 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( A(I,J), J = 1, N )
10 CONTINUE
IF( VEC(5) ) THEN
WRITE( NOUT, FMT = 99993 )
DO 20 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( B(I,J), J = 1, M )
20 CONTINUE
ELSE
WRITE( NOUT, FMT = 99992 )
END IF
IF( VEC(6) ) THEN
WRITE( NOUT,FMT = 99991 )
DO 30 I = 1, P
WRITE( NOUT, FMT = 99979 ) ( C(I,J), J = 1, N )
30 CONTINUE
ELSE
WRITE( NOUT, FMT = 99990 )
END IF
IF( .NOT.VEC(5) ) THEN
WRITE( NOUT, FMT = 99989 )
IF( .NOT.BPAR(2) ) THEN
ISYMM = ( N * ( N + 1 ) ) / 2
CALL DCOPY( ISYMM, G, 1, DWORK, 1 )
IF( BPAR(3) ) THEN
CALL MA02DD( 'Unpack', 'Upper', N, G, LDG, DWORK )
ELSE
CALL MA02DD( 'Unpack', 'Lower', N, G, LDG, DWORK )
END IF
END IF
DO 40 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( G(I,J), J = 1, N )
40 CONTINUE
ELSE
WRITE( NOUT, FMT = 99988 )
END IF
IF( .NOT.VEC(6) ) THEN
IF( .NOT. BPAR(5) ) THEN
ISYMM = ( N * ( N + 1 ) ) / 2
CALL DCOPY( ISYMM, Q, 1, DWORK, 1 )
IF( BPAR(6) ) THEN
CALL MA02DD( 'Unpack', 'Upper', N, Q, LDQ, DWORK )
ELSE
CALL MA02DD( 'Unpack', 'Lower', N, Q, LDQ, DWORK )
END IF
END IF
WRITE( NOUT, FMT = 99987 )
DO 50 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( Q(I,J), J = 1, N )
50 CONTINUE
ELSE
WRITE( NOUT, FMT = 99986 )
END IF
IF( VEC(6) ) THEN
IF( .NOT.BPAR(5) ) THEN
ISYMM = ( P * ( P + 1 ) ) / 2
CALL DCOPY( ISYMM, Q, 1, DWORK, 1 )
IF( BPAR(6) ) THEN
CALL MA02DD( 'Unpack', 'Upper', P, Q, LDQ, DWORK )
ELSE
CALL MA02DD( 'Unpack', 'Lower', P, Q, LDQ, DWORK )
END IF
END IF
WRITE( NOUT, FMT = 99985 )
DO 60 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( Q(I,J), J = 1, N )
60 CONTINUE
ELSE
WRITE( NOUT, FMT = 99984 )
END IF
IF( VEC(5) ) THEN
IF( .NOT.BPAR(2) ) THEN
ISYMM = ( M * ( M + 1 ) ) / 2
CALL DCOPY( ISYMM, G, 1, DWORK, 1 )
IF( BPAR(3) ) THEN
CALL MA02DD( 'Unpack', 'Upper', M, G, LDG, DWORK )
ELSE
CALL MA02DD( 'Unpack', 'Lower', M, G, LDG, DWORK )
END IF
END IF
WRITE( NOUT, FMT = 99983 )
DO 70 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( G(I,J), J = 1, N )
70 CONTINUE
ELSE
WRITE( NOUT, FMT = 99982 )
END IF
IF( VEC(9) ) THEN
WRITE( NOUT, FMT = 99981 )
DO 80 I = 1, N
WRITE( NOUT, FMT = 99979 ) ( X(I,J), J = 1, N )
80 CONTINUE
ELSE
WRITE( NOUT, FMT = 99980 )
END IF
END IF
STOP
*
99999 FORMAT (' BB01AD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from BB03AD = ', I3)
99997 FORMAT (/' Order of matrix A: N = ', I3)
99996 FORMAT (' Number of columns in matrix B: M = ', I3)
99995 FORMAT (' Number of rows in matrix C: P = ', I3)
99994 FORMAT (' A = ')
99993 FORMAT (' B = ')
99992 FORMAT (' B is not provided.')
99991 FORMAT (' C = ')
99990 FORMAT (' C is not provided.')
99989 FORMAT (' G = ')
99988 FORMAT (' G is not provided.')
99987 FORMAT (' Q = ')
99986 FORMAT (' Q is not provided.')
99985 FORMAT (' W = ')
99984 FORMAT (' W is not provided.')
99983 FORMAT (' R = ')
99982 FORMAT (' R is not provided.')
99981 FORMAT (' X = ')
99980 FORMAT (' X is not provided.')
99979 FORMAT (20(1X,F8.4))
*
END
</PRE>
<B>Program Data</B>
<PRE>
BB01AD EXAMPLE PROGRAM DATA
N
2 3
6
.T. .T. .T. .F. .F. .T.
1
.1234
0
</PRE>
<B>Program Results</B>
<PRE>
BB01AD EXAMPLE PROGRAM RESULTS
Kenney/Laub/Wette 1989, Ex.2: ARE ill conditioned for EPS -> oo
Order of matrix A: N = 2
Number of columns in matrix B: M = 1
Number of rows in matrix C: P = 2
A =
0.0000 0.1234
0.0000 0.0000
B is not provided.
C =
1.0000 0.0000
0.0000 1.0000
G =
0.0000 0.0000
0.0000 1.0000
Q is not provided.
W =
1.0000 0.0000
0.0000 1.0000
R is not provided.
X =
9.0486 1.0000
1.0000 1.1166
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>