control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
<HTML>
<HEAD><TITLE>AB05OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB05OD">AB05OD</A></H2>
<H3>
Rowwise concatenation of two systems in state-space form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To obtain the state-space model (A,B,C,D) for rowwise
  concatenation (parallel inter-connection on outputs, with separate
  inputs) of two systems, each given in state-space form.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE AB05OD( OVER, N1, M1, P1, N2, M2, ALPHA, A1, LDA1, B1,
     $                   LDB1, C1, LDC1, D1, LDD1, A2, LDA2, B2, LDB2,
     $                   C2, LDC2, D2, LDD2, N, M, A, LDA, B, LDB, C,
     $                   LDC, D, LDD, INFO )
C     .. Scalar Arguments ..
      CHARACTER         OVER
      INTEGER           INFO, LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC,
     $                  LDC1, LDC2, LDD, LDD1, LDD2, M, M1, M2, N, N1,
     $                  N2, P1
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), A1(LDA1,*), A2(LDA2,*), B(LDB,*),
     $                  B1(LDB1,*), B2(LDB2,*), C(LDC,*), C1(LDC1,*),
     $                  C2(LDC2,*), D(LDD,*), D1(LDD1,*), D2(LDD2,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  OVER    CHARACTER*1
          Indicates whether the user wishes to overlap pairs of
          arrays, as follows:
          = 'N':  Do not overlap;
          = 'O':  Overlap pairs of arrays: A1 and A, B1 and B,
                  C1 and C, and D1 and D, i.e. the same name is
                  effectively used for each pair (for all pairs)
                  in the routine call.  In this case, setting
                  LDA1 = LDA, LDB1 = LDB, LDC1 = LDC, and LDD1 = LDD
                  will give maximum efficiency.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N1      (input) INTEGER
          The number of state variables in the first system, i.e.
          the order of the matrix A1.  N1 &gt;= 0.

  M1      (input) INTEGER
          The number of input variables for the first system.
          M1 &gt;= 0.

  P1      (input) INTEGER
          The number of output variables from each system.  P1 &gt;= 0.

  N2      (input) INTEGER
          The number of state variables in the second system, i.e.
          the order of the matrix A2.  N2 &gt;= 0.

  M2      (input) INTEGER
          The number of input variables for the second system.
          M2 &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          A coefficient multiplying the transfer-function matrix
          (or the output equation) of the second system.

  A1      (input) DOUBLE PRECISION array, dimension (LDA1,N1)
          The leading N1-by-N1 part of this array must contain the
          state transition matrix A1 for the first system.

  LDA1    INTEGER
          The leading dimension of array A1.  LDA1 &gt;= MAX(1,N1).

  B1      (input) DOUBLE PRECISION array, dimension (LDB1,M1)
          The leading N1-by-M1 part of this array must contain the
          input/state matrix B1 for the first system.

  LDB1    INTEGER
          The leading dimension of array B1.  LDB1 &gt;= MAX(1,N1).

  C1      (input) DOUBLE PRECISION array, dimension (LDC1,N1)
          The leading P1-by-N1 part of this array must contain the
          state/output matrix C1 for the first system.

  LDC1    INTEGER
          The leading dimension of array C1.
          LDC1 &gt;= MAX(1,P1) if N1 &gt; 0.
          LDC1 &gt;= 1 if N1 = 0.

  D1      (input) DOUBLE PRECISION array, dimension (LDD1,M1)
          The leading P1-by-M1 part of this array must contain the
          input/output matrix D1 for the first system.

  LDD1    INTEGER
          The leading dimension of array D1.  LDD1 &gt;= MAX(1,P1).

  A2      (input) DOUBLE PRECISION array, dimension (LDA2,N2)
          The leading N2-by-N2 part of this array must contain the
          state transition matrix A2 for the second system.

  LDA2    INTEGER
          The leading dimension of array A2.  LDA2 &gt;= MAX(1,N2).

  B2      (input) DOUBLE PRECISION array, dimension (LDB2,M2)
          The leading N2-by-M2 part of this array must contain the
          input/state matrix B2 for the second system.

  LDB2    INTEGER
          The leading dimension of array B2.  LDB2 &gt;= MAX(1,N2).

  C2      (input) DOUBLE PRECISION array, dimension (LDC2,N2)
          The leading P1-by-N2 part of this array must contain the
          state/output matrix C2 for the second system.

  LDC2    INTEGER
          The leading dimension of array C2.
          LDC2 &gt;= MAX(1,P1) if N2 &gt; 0.
          LDC2 &gt;= 1 if N2 = 0.

  D2      (input) DOUBLE PRECISION array, dimension (LDD2,M2)
          The leading P1-by-M2 part of this array must contain the
          input/output matrix D2 for the second system.

  LDD2    INTEGER
          The leading dimension of array D2.  LDD2 &gt;= MAX(1,P1).

  N       (output) INTEGER
          The number of state variables (N1 + N2) in the connected
          system, i.e. the order of the matrix A, the number of rows
          of B and the number of columns of C.

  M       (output) INTEGER
          The number of input variables (M1 + M2) for the connected
          system, i.e. the number of columns of B and D.

  A       (output) DOUBLE PRECISION array, dimension (LDA,N1+N2)
          The leading N-by-N part of this array contains the state
          transition matrix A for the connected system.
          The array A can overlap A1 if OVER = 'O'.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N1+N2).

  B       (output) DOUBLE PRECISION array, dimension (LDB,M1+M2)
          The leading N-by-M part of this array contains the
          input/state matrix B for the connected system.
          The array B can overlap B1 if OVER = 'O'.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N1+N2).

  C       (output) DOUBLE PRECISION array, dimension (LDC,N1+N2)
          The leading P1-by-N part of this array contains the
          state/output matrix C for the connected system.
          The array C can overlap C1 if OVER = 'O'.

  LDC     INTEGER
          The leading dimension of array C.
          LDC &gt;= MAX(1,P1) if N1+N2 &gt; 0.
          LDC &gt;= 1 if N1+N2 = 0.

  D       (output) DOUBLE PRECISION array, dimension (LDD,M1+M2)
          The leading P1-by-M part of this array contains the
          input/output matrix D for the connected system.
          The array D can overlap D1 if OVER = 'O'.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,P1).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  After rowwise concatenation (parallel inter-connection with
  separate inputs) of the two systems,

  X1'     = A1*X1 + B1*U
  Y1      = C1*X1 + D1*U

  X2'     = A2*X2 + B2*V
  Y2      = C2*X2 + D2*V

  (where  '  denotes differentiation with respect to time),

  with the output equation for the second system multiplied by a
  scalar alpha, the following state-space model will be obtained:

  X'      = A*X + B*(U)
                    (V)

  Y       = C*X + D*(U)
                    (V)

  where matrix  A  has the form    ( A1   0  ),
                                   ( 0    A2 )

        matrix  B  has the form    ( B1   0  ),
                                   ( 0    B2 )

        matrix  C  has the form    ( C1   alpha*C2 ) and

        matrix  D  has the form    ( D1   alpha*D2 ).

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  None

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB05OD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          N1MAX, N2MAX, NMAX, M1MAX, M2MAX, MMAX, P1MAX
      PARAMETER        ( N1MAX = 20, N2MAX = 20, NMAX = N1MAX+N2MAX,
     $                   M1MAX = 20, M2MAX = 20, MMAX = M1MAX+M2MAX,
     $                   P1MAX = 20 )
      INTEGER          LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC, LDC1,
     $                 LDC2, LDD, LDD1, LDD2
      PARAMETER        ( LDA = NMAX, LDA1 = N1MAX, LDA2 = N2MAX,
     $                   LDB = NMAX, LDB1 = N1MAX, LDB2 = N2MAX,
     $                   LDC = P1MAX, LDC1 = P1MAX, LDC2 = P1MAX,
     $                   LDD = P1MAX, LDD1 = P1MAX, LDD2 = P1MAX )
      DOUBLE PRECISION ONE
      PARAMETER        ( ONE=1.0D0 )
*     .. Local Scalars ..
      CHARACTER*1      OVER
      INTEGER          I, INFO, J, M, M1, M2, N, N1, N2, P1
      DOUBLE PRECISION ALPHA
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), A1(LDA1,N1MAX), A2(LDA2,N2MAX),
     $                 B(LDB,MMAX), B1(LDB1,M1MAX), B2(LDB2,M2MAX),
     $                 C(LDC,NMAX), C1(LDC1,N1MAX), C2(LDC2,N2MAX),
     $                 D(LDD,MMAX), D1(LDD1,M1MAX), D2(LDD2,M2MAX)
*     .. External Subroutines ..
      EXTERNAL         AB05OD
*     .. Executable Statements ..
*
      OVER = 'N'
      ALPHA = ONE
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N1, M1, P1, N2, M2
      IF ( N1.LE.0 .OR. N1.GT.N1MAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N1
      ELSE
         READ ( NIN, FMT = * ) ( ( A1(I,J), J = 1,N1 ), I = 1,N1 )
         IF ( M1.LE.0 .OR. M1.GT.M1MAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) M1
         ELSE
            READ ( NIN, FMT = * ) ( ( B1(I,J), I = 1,N1 ), J = 1,M1 )
            IF ( P1.LE.0 .OR. P1.GT.P1MAX ) THEN
               WRITE ( NOUT, FMT = 99991 ) P1
            ELSE
               READ ( NIN, FMT = * ) ( ( C1(I,J), J = 1,N1 ), I = 1,P1 )
               READ ( NIN, FMT = * ) ( ( D1(I,J), J = 1,M1 ), I = 1,P1 )
               IF ( N2.LE.0 .OR. N2.GT.N2MAX ) THEN
                  WRITE ( NOUT, FMT = 99990 ) N2
               ELSE
                  READ ( NIN, FMT = * )
     $                 ( ( A2(I,J), J = 1,N2 ), I = 1,N2 )
                  IF ( M2.LE.0 .OR. M2.GT.M2MAX ) THEN
                     WRITE ( NOUT, FMT = 99989 ) M2
                  ELSE
                     READ ( NIN, FMT = * )
     $                    ( ( B2(I,J), I = 1,N2 ), J = 1,M2 )
                     READ ( NIN, FMT = * )
     $                    ( ( C2(I,J), J = 1,N2 ), I = 1,P1 )
                     READ ( NIN, FMT = * )
     $                    ( ( D2(I,J), J = 1,M2 ), I = 1,P1 )
*                       Find the state-space model (A,B,C,D).
                     CALL AB05OD( OVER, N1, M1, P1, N2, M2, ALPHA, A1,
     $                            LDA1, B1, LDB1, C1, LDC1, D1, LDD1,
     $                            A2, LDA2, B2, LDB2, C2, LDC2, D2,
     $                            LDD2, N, M, A, LDA, B, LDB, C, LDC,
     $                            D, LDD, INFO )
*
                     IF ( INFO.NE.0 ) THEN
                        WRITE ( NOUT, FMT = 99998 ) INFO
                     ELSE
                        WRITE ( NOUT, FMT = 99997 )
                        DO 20 I = 1, N
                           WRITE ( NOUT, FMT = 99996 )
     $                           ( A(I,J), J = 1,N )
   20                   CONTINUE
                        WRITE ( NOUT, FMT = 99995 )
                        DO 40 I = 1, N
                           WRITE ( NOUT, FMT = 99996 )
     $                           ( B(I,J), J = 1,M )
   40                   CONTINUE
                        WRITE ( NOUT, FMT = 99994 )
                        DO 60 I = 1, P1
                           WRITE ( NOUT, FMT = 99996 )
     $                           ( C(I,J), J = 1,N )
   60                   CONTINUE
                        WRITE ( NOUT, FMT = 99993 )
                        DO 80 I = 1, P1
                           WRITE ( NOUT, FMT = 99996 )
     $                           ( D(I,J), J = 1,M )
   80                   CONTINUE
                     END IF
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB05OD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB05OD = ',I2)
99997 FORMAT (' The state transition matrix of the connected system is')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The input/state matrix of the connected system is ')
99994 FORMAT (/' The state/output matrix of the connected system is ')
99993 FORMAT (/' The input/output matrix of the connected system is ')
99992 FORMAT (/' N1 is out of range.',/' N1 = ',I5)
99991 FORMAT (/' M1 is out of range.',/' M1 = ',I5)
99990 FORMAT (/' P1 is out of range.',/' P1 = ',I5)
99989 FORMAT (/' N2 is out of range.',/' N2 = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB05OD EXAMPLE PROGRAM DATA
   3     2     2     3     2
   1.0   0.0  -1.0
   0.0  -1.0   1.0
   1.0   1.0   2.0
   1.0   1.0   0.0
   2.0   0.0   1.0
   3.0  -2.0   1.0
   0.0   1.0   0.0
   1.0   0.0
   0.0   1.0
  -3.0   0.0   0.0
   1.0   0.0   1.0
   0.0  -1.0   2.0
   0.0  -1.0   0.0
   1.0   0.0   2.0
   1.0   1.0   0.0
   1.0   1.0  -1.0
   1.0   1.0
   0.0   1.0
</PRE>
<B>Program Results</B>
<PRE>
 AB05OD EXAMPLE PROGRAM RESULTS

 The state transition matrix of the connected system is
   1.0000   0.0000  -1.0000   0.0000   0.0000   0.0000
   0.0000  -1.0000   1.0000   0.0000   0.0000   0.0000
   1.0000   1.0000   2.0000   0.0000   0.0000   0.0000
   0.0000   0.0000   0.0000  -3.0000   0.0000   0.0000
   0.0000   0.0000   0.0000   1.0000   0.0000   1.0000
   0.0000   0.0000   0.0000   0.0000  -1.0000   2.0000

 The input/state matrix of the connected system is 
   1.0000   2.0000   0.0000   0.0000
   1.0000   0.0000   0.0000   0.0000
   0.0000   1.0000   0.0000   0.0000
   0.0000   0.0000   0.0000   1.0000
   0.0000   0.0000  -1.0000   0.0000
   0.0000   0.0000   0.0000   2.0000

 The state/output matrix of the connected system is 
   3.0000  -2.0000   1.0000   1.0000   1.0000   0.0000
   0.0000   1.0000   0.0000   1.0000   1.0000  -1.0000

 The input/output matrix of the connected system is 
   1.0000   0.0000   1.0000   1.0000
   0.0000   1.0000   0.0000   1.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>