control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>MB03GD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB03GD">MB03GD</A></H2>
<H3>
Exchanging eigenvalues of a real 2-by-2 or 4-by-4 block upper triangular skew-Hamiltonian/Hamiltonian pencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute an orthogonal matrix Q and an orthogonal symplectic
  matrix U for a real regular 2-by-2 or 4-by-4 skew-Hamiltonian/
  Hamiltonian pencil a J B' J' B - b D with

        ( B11  B12 )      (  D11  D12  )      (  0  I  )
    B = (          ), D = (            ), J = (        ),
        (  0   B22 )      (   0  -D11' )      ( -I  0  )

  such that J Q' J' D Q and U' B Q keep block triangular form, but
  the eigenvalues are reordered. The notation M' denotes the
  transpose of the matrix M.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB03GD( N, B, LDB, D, LDD, MACPAR, Q, LDQ, U, LDU,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDB, LDD, LDQ, LDU, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION   B( LDB, * ), D( LDD, * ), DWORK( * ),
     $                   MACPAR( * ), Q( LDQ, * ), U( LDU, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the pencil a J B' J' B - b D. N = 2 or N = 4.

  B       (input) DOUBLE PRECISION array, dimension (LDB, N)
          The leading N-by-N part of this array must contain the
          non-trivial factor of the decomposition of the
          skew-Hamiltonian input matrix J B' J' B. The (2,1) block
          is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= N.

  D       (input) DOUBLE PRECISION array, dimension (LDD, N)
          The leading N/2-by-N part of this array must contain the
          first block row of the second matrix of a J B' J' B - b D.
          The matrix D has to be Hamiltonian. The strict lower
          triangle of the (1,2) block is not referenced.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= N/2.

  MACPAR  (input)  DOUBLE PRECISION array, dimension (2)
          Machine parameters:
          MACPAR(1)  (machine precision)*base, DLAMCH( 'P' );
          MACPAR(2)  safe minimum,             DLAMCH( 'S' ).
          This argument is not used for N = 2.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
          The leading N-by-N part of this array contains the
          orthogonal transformation matrix Q.

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ &gt;= N.

  U       (output) DOUBLE PRECISION array, dimension (LDU, N)
          The leading N-by-N part of this array contains the
          orthogonal symplectic transformation matrix U.

  LDU     INTEGER
          The leading dimension of the array U.  LDU &gt;= N.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          If N = 2 then DWORK is not referenced.

  LDWORK  INTEGER
          The length of the array DWORK.
          If N = 2 then LDWORK &gt;= 0; if N = 4 then LDWORK &gt;= 12.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0: succesful exit;
          = 1: B11 or B22 is a (numerically) singular matrix.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The algorithm uses orthogonal transformations as described on page
  22 in [1], but with an improved implementation.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>