control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>MC03NX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MC03NX">MC03NX</A></H2>
<H3>
Construction of a pencil sE-A related to a given polynomial matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  Given an MP-by-NP polynomial matrix of degree dp
                                 dp-1            dp
  P(s) = P(0) + ... + P(dp-1) * s     + P(dp) * s            (1)

  the routine composes the related pencil s*E-A where

      | I              |           | O          -P(dp) |
      |   .            |           | I .           .   |
  A = |     .          |  and  E = |   . .         .   |.    (2)
      |       .        |           |     . O       .   |
      |         I      |           |       I  O -P(2)  |
      |           P(0) |           |          I -P(1)  |

  ==================================================================
  REMARK: This routine is intended to be called only from the SLICOT
          routine MC03ND.
  ==================================================================

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MC03NX( MP, NP, DP, P, LDP1, LDP2, A, LDA, E, LDE )
C     .. Scalar Arguments ..
      INTEGER           DP, LDA, LDE, LDP1, LDP2, MP, NP
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), E(LDE,*), P(LDP1,LDP2,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  MP      (input) INTEGER
          The number of rows of the polynomial matrix P(s).
          MP &gt;= 0.

  NP      (input) INTEGER
          The number of columns of the polynomial matrix P(s).
          NP &gt;= 0.

  DP      (input) INTEGER
          The degree of the polynomial matrix P(s).  DP &gt;= 1.

  P       (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1)
          The leading MP-by-NP-by-(DP+1) part of this array must
          contain the coefficients of the polynomial matrix P(s)
          in (1) in increasing powers of s.

  LDP1    INTEGER
          The leading dimension of array P.  LDP1 &gt;= MAX(1,MP).

  LDP2    INTEGER
          The second dimension of array P.   LDP2 &gt;= MAX(1,NP).

  A       (output) DOUBLE PRECISION array, dimension
          (LDA,(DP-1)*MP+NP)
          The leading DP*MP-by-((DP-1)*MP+NP) part of this array
          contains the matrix A as described in (2).

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,DP*MP).

  E       (output) DOUBLE PRECISION array, dimension
          (LDE,(DP-1)*MP+NP)
          The leading DP*MP-by-((DP-1)*MP+NP) part of this array
          contains the matrix E as described in (2).

  LDE     INTEGER
          The leading dimension of array E.  LDE &gt;= MAX(1,DP*MP).

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>