<HTML>
<HEAD><TITLE>UD01ND - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="UD01ND">UD01ND</A></H2>
<H3>
Printing a matrix polynomial
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To print the MP-by-NP coefficient matrices of a matrix polynomial
dp-1 dp
P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s .
The elements of the matrices are output to 7 significant figures.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, TEXT,
$ INFO )
C .. Scalar Arguments ..
INTEGER DP, INFO, L, LDP1, LDP2, MP, NP, NOUT
CHARACTER*(*) TEXT
C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LDP2,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
MP (input) INTEGER
The number of rows of the matrix polynomial P(s).
MP >= 1.
NP (input) INTEGER
The number of columns of the matrix polynomial P(s).
NP >= 1.
DP (input) INTEGER
The degree of the matrix polynomial P(s). DP >= 0.
L (input) INTEGER
The number of elements of the coefficient matrices to be
printed per line. 1 <= L <= 5.
NOUT (input) INTEGER
The output channel to which the results are sent.
NOUT >= 0.
P (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1)
The leading MP-by-NP-by-(DP+1) part of this array must
contain the coefficients of the matrix polynomial P(s).
Specifically, P(i,j,k) must contain the coefficient of
s**(k-1) of the polynomial which is the (i,j)-th element
of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and
k = 1,2,...,DP+1.
LDP1 INTEGER
The leading dimension of array P. LDP1 >= MP.
LDP2 INTEGER
The second dimension of array P. LDP2 >= NP.
TEXT (input) CHARACTER*72
Title caption of the coefficient matrices to be printed.
TEXT is followed by the degree of the coefficient matrix,
within brackets. If TEXT = ' ', then the coefficient
matrices are separated by an empty line.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
For i = 1, 2, ..., DP + 1 the routine first prints the contents of
TEXT followed by (i-1) as a title, followed by the elements of the
MP-by-NP coefficient matrix P(i) such that
(i) if NP < L, then the leading MP-by-NP part is printed;
(ii) if NP = k*L + p (where k, p > 0), then k MP-by-L blocks of
consecutive columns of P(i) are printed one after another
followed by one MP-by-p block containing the last p columns
of P(i).
Row numbers are printed on the left of each row and a column
number on top of each column.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* UD01ND EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MPMAX, NPMAX, DPMAX
PARAMETER ( MPMAX = 10, NPMAX = 10, DPMAX = 5 )
INTEGER LDP1, LDP2
PARAMETER ( LDP1 = MPMAX, LDP2 = NPMAX )
* .. Local Scalars ..
INTEGER DP, INFO, L, MP, NP
CHARACTER*72 TEXT
* .. Local Arrays ..
DOUBLE PRECISION P(LDP1,LDP2,DPMAX)
* .. External Subroutines ..
EXTERNAL UD01BD, UD01ND
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) MP, NP, DP, L, TEXT
IF ( MP.LE.0 .OR. MP.GT.MPMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) MP
ELSE IF ( NP.LE.0 .OR. NP.GT.NPMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) NP
ELSE IF ( DP.LT.0 .OR. DP.GT.DPMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) DP
ELSE
* Read the coefficients of the matrix polynomial P(s).
CALL UD01BD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, 99996 ) MP, NP, DP
* Write the coefficients of the matrix polynomial P(s).
CALL UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, TEXT,
$ INFO )
IF ( INFO.NE.0 )
$ WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' UD01ND EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from UD01ND = ',I2)
99997 FORMAT (' INFO on exit from UD01BD = ',I2)
99996 FORMAT (' MP =', I2, 2X, ' NP =', I2, 3X, 'DP =', I2)
99995 FORMAT (/' NP is out of range.',/' NP = ',I5)
99994 FORMAT (/' MP is out of range.',/' MP = ',I5)
99993 FORMAT (/' DP is out of range.',/' DP = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
UD01ND EXAMPLE PROGRAM DATA
4 3 2 5 P
P0
1.0D-00 0.0D-00 0.0D-00
0.0D-00 2.0D-00 4.0D-00
0.0D-00 4.0D-00 8.0D-00
0.0D-00 6.0D-00 1.2D+01
P1
0.0D-00 1.0D-00 2.0D-00
1.0D-00 0.0D-00 0.0D-00
2.0D-00 0.0D-00 0.0D-00
3.0D-00 0.0D-00 0.0D-00
P2
1.0D-00 0.0D-00 0.0D-00
0.0D-00 0.0D-00 0.0D-00
0.0D-00 0.0D-00 0.0D-00
0.0D-00 0.0D-00 0.0D-00
</PRE>
<B>Program Results</B>
<PRE>
UD01ND EXAMPLE PROGRAM RESULTS
MP = 4 NP = 3 DP = 2
P( 0) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.2000000D+01 0.4000000D+01
3 0.0000000D+00 0.4000000D+01 0.8000000D+01
4 0.0000000D+00 0.6000000D+01 0.1200000D+02
P( 1) ( 4X 3)
1 2 3
1 0.0000000D+00 0.1000000D+01 0.2000000D+01
2 0.1000000D+01 0.0000000D+00 0.0000000D+00
3 0.2000000D+01 0.0000000D+00 0.0000000D+00
4 0.3000000D+01 0.0000000D+00 0.0000000D+00
P( 2) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.0000000D+00 0.0000000D+00
3 0.0000000D+00 0.0000000D+00 0.0000000D+00
4 0.0000000D+00 0.0000000D+00 0.0000000D+00
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>