control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
<HTML>
<HEAD><TITLE>SB04PD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB04PD">SB04PD</A></H2>
<H3>
Solution of continuous-time or discrete-time Sylvester equations (Bartels-Stewart method)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To solve for X either the real continuous-time Sylvester equation

     op(A)*X + ISGN*X*op(B) = scale*C,                           (1)

  or the real discrete-time Sylvester equation

     op(A)*X*op(B) + ISGN*X = scale*C,                           (2)

  where op(M) = M or M**T, and ISGN = 1 or -1. A is M-by-M and
  B is N-by-N; the right hand side C and the solution X are M-by-N;
  and scale is an output scale factor, set less than or equal to 1
  to avoid overflow in X. The solution matrix X is overwritten
  onto C.

  If A and/or B are not (upper) quasi-triangular, that is, block
  upper triangular with 1-by-1 and 2-by-2 diagonal blocks, they are
  reduced to Schur canonical form, that is, quasi-triangular with
  each 2-by-2 diagonal block having its diagonal elements equal and
  its off-diagonal elements of opposite sign.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB04PD( DICO, FACTA, FACTB, TRANA, TRANB, ISGN, M, N,
     $                   A, LDA, U, LDU, B, LDB, V, LDV, C, LDC, SCALE,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          DICO, FACTA, FACTB, TRANA, TRANB
      INTEGER            INFO, ISGN, LDA, LDB, LDC, LDU, LDV, LDWORK, M,
     $                   N
      DOUBLE PRECISION   SCALE
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK( * ),  U( LDU, * ), V( LDV, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the equation from which X is to be determined
          as follows:
          = 'C':  Equation (1), continuous-time case;
          = 'D':  Equation (2), discrete-time case.

  FACTA   CHARACTER*1
          Specifies whether or not the real Schur factorization
          of the matrix A is supplied on entry, as follows:
          = 'F':  On entry, A and U contain the factors from the
                  real Schur factorization of the matrix A;
          = 'N':  The Schur factorization of A will be computed
                  and the factors will be stored in A and U;
          = 'S':  The matrix A is quasi-triangular (or Schur).

  FACTB   CHARACTER*1
          Specifies whether or not the real Schur factorization
          of the matrix B is supplied on entry, as follows:
          = 'F':  On entry, B and V contain the factors from the
                  real Schur factorization of the matrix B;
          = 'N':  The Schur factorization of B will be computed
                  and the factors will be stored in B and V;
          = 'S':  The matrix B is quasi-triangular (or Schur).

  TRANA   CHARACTER*1
          Specifies the form of op(A) to be used, as follows:
          = 'N':  op(A) = A    (No transpose);
          = 'T':  op(A) = A**T (Transpose);
          = 'C':  op(A) = A**T (Conjugate transpose = Transpose).

  TRANB   CHARACTER*1
          Specifies the form of op(B) to be used, as follows:
          = 'N':  op(B) = B    (No transpose);
          = 'T':  op(B) = B**T (Transpose);
          = 'C':  op(B) = B**T (Conjugate transpose = Transpose).

  ISGN    INTEGER
          Specifies the sign of the equation as described before.
          ISGN may only be 1 or -1.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The order of the matrix A, and the number of rows in the
          matrices X and C.  M &gt;= 0.

  N       (input) INTEGER
          The order of the matrix B, and the number of columns in
          the matrices X and C.  N &gt;= 0.

  A       (input or input/output) DOUBLE PRECISION array,
          dimension (LDA,M)
          On entry, the leading M-by-M part of this array must
          contain the matrix A. If FACTA = 'S', then A contains
          a quasi-triangular matrix, and if FACTA = 'F', then A
          is in Schur canonical form; the elements below the upper
          Hessenberg part of the array A are not referenced.
          On exit, if FACTA = 'N', and INFO = 0 or INFO &gt;= M+1, the
          leading M-by-M upper Hessenberg part of this array
          contains the upper quasi-triangular matrix in Schur
          canonical form from the Schur factorization of A. The
          contents of array A is not modified if FACTA = 'F' or 'S'.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,M).

  U       (input or output) DOUBLE PRECISION array, dimension
          (LDU,M)
          If FACTA = 'F', then U is an input argument and on entry
          the leading M-by-M part of this array must contain the
          orthogonal matrix U of the real Schur factorization of A.
          If FACTA = 'N', then U is an output argument and on exit,
          if INFO = 0 or INFO &gt;= M+1, it contains the orthogonal
          M-by-M matrix from the real Schur factorization of A.
          If FACTA = 'S', the array U is not referenced.

  LDU     INTEGER
          The leading dimension of array U.
          LDU &gt;= MAX(1,M), if FACTA = 'F' or 'N';
          LDU &gt;= 1,        if FACTA = 'S'.

  B       (input or input/output) DOUBLE PRECISION array,
          dimension (LDB,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix B. If FACTB = 'S', then B contains
          a quasi-triangular matrix, and if FACTB = 'F', then B
          is in Schur canonical form; the elements below the upper
          Hessenberg part of the array B are not referenced.
          On exit, if FACTB = 'N', and INFO = 0 or INFO = M+N+1,
          the leading N-by-N upper Hessenberg part of this array
          contains the upper quasi-triangular matrix in Schur
          canonical form from the Schur factorization of B. The
          contents of array B is not modified if FACTB = 'F' or 'S'.

  LDB     (input) INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  V       (input or output) DOUBLE PRECISION array, dimension
          (LDV,N)
          If FACTB = 'F', then V is an input argument and on entry
          the leading N-by-N part of this array must contain the
          orthogonal matrix V of the real Schur factorization of B.
          If FACTB = 'N', then V is an output argument and on exit,
          if INFO = 0 or INFO = M+N+1, it contains the orthogonal
          N-by-N matrix from the real Schur factorization of B.
          If FACTB = 'S', the array V is not referenced.

  LDV     INTEGER
          The leading dimension of array V.
          LDV &gt;= MAX(1,N), if FACTB = 'F' or 'N';
          LDV &gt;= 1,        if FACTB = 'S'.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading M-by-N part of this array must
          contain the right hand side matrix C.
          On exit, if INFO = 0 or INFO = M+N+1, the leading M-by-N
          part of this array contains the solution matrix X.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,M).

  SCALE   (output) DOUBLE PRECISION
          The scale factor, scale, set less than or equal to 1 to
          prevent the solution overflowing.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0 or M+N+1, then: DWORK(1) returns the
          optimal value of LDWORK; if FACTA = 'N', DWORK(1+i) and
          DWORK(1+M+i), i = 1,...,M, contain the real and imaginary
          parts, respectively, of the eigenvalues of A; and, if
          FACTB = 'N', DWORK(1+f+j) and DWORK(1+f+N+j), j = 1,...,N,
          with f = 2*M if FACTA = 'N', and f = 0, otherwise, contain
          the real and imaginary parts, respectively, of the
          eigenvalues of B.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX( 1, a+MAX( c, b+d, b+e ) ),
          where a = 1+2*M, if FACTA =  'N',
                a = 0,     if FACTA &lt;&gt; 'N',
                b = 2*N,   if FACTB =  'N', FACTA =  'N',
                b = 1+2*N, if FACTB =  'N', FACTA &lt;&gt; 'N',
                b = 0,     if FACTB &lt;&gt; 'N',
                c = 3*M,   if FACTA =  'N',
                c = M,     if FACTA =  'F',
                c = 0,     if FACTA =  'S',
                d = 3*N,   if FACTB =  'N',
                d = N,     if FACTB =  'F',
                d = 0,     if FACTB =  'S',
                e = M,     if DICO  =  'C', FACTA &lt;&gt; 'S',
                e = 0,     if DICO  =  'C', FACTA =  'S',
                e = 2*M,   if DICO  =  'D'.
          An upper bound is
          LDWORK = 1+2*M+MAX( 3*M, 5*N, 2*N+2*M ).
          For good performance, LDWORK should be larger, e.g.,
          LDWORK = 1+2*M+MAX( 3*M, 5*N, 2*N+2*M, 2*N+M*N ).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = i:  if INFO = i, i = 1,...,M, the QR algorithm failed
                to compute all the eigenvalues of the matrix A
                (see LAPACK Library routine DGEES); the elements
                2+i:1+M and 2+i+M:1+2*M of DWORK contain the real
                and imaginary parts, respectively, of the
                eigenvalues of A which have converged, and the
                array A contains the partially converged Schur form;
          = M+j:  if INFO = M+j, j = 1,...,N, the QR algorithm
                failed to compute all the eigenvalues of the matrix
                B (see LAPACK Library routine DGEES); the elements
                2+f+j:1+f+N and 2+f+j+N:1+f+2*N of DWORK contain the
                real and imaginary parts, respectively, of the
                eigenvalues of B which have converged, and the
                array B contains the partially converged Schur form;
                as defined for the parameter DWORK,
                f = 2*M, if FACTA =  'N',
                f = 0,   if FACTA &lt;&gt; 'N';
          = M+N+1:  if DICO = 'C', and the matrices A and -ISGN*B
                have common or very close eigenvalues, or
                if DICO = 'D', and the matrices A and -ISGN*B have
                almost reciprocal eigenvalues (that is, if lambda(i)
                and mu(j) are eigenvalues of A and -ISGN*B, then
                lambda(i) = 1/mu(j) for some i and j);
                perturbed values were used to solve the equation
                (but the matrices A and B are unchanged).

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  An extension and refinement of the algorithms in [1,2] is used.
  If the matrices A and/or B are not quasi-triangular (see PURPOSE),
  they are reduced to Schur canonical form

     A = U*S*U',  B = V*T*V',

  where U, V are orthogonal, and S, T are block upper triangular
  with 1-by-1 and 2-by-2 blocks on their diagonal. The right hand
  side matrix C is updated accordingly,

     C = U'*C*V;

  then, the solution matrix X of the "reduced" Sylvester equation
  (with A and B in (1) or (2) replaced by S and T, respectively),
  is computed column-wise via a back substitution scheme. A set of
  equivalent linear algebraic systems of equations of order at most
  four are formed and solved using Gaussian elimination with
  complete pivoting. Finally, the solution X of the original
  equation is obtained from the updating formula

     X = U*X*V'.

  If A and/or B are already quasi-triangular (or in Schur form), the
  initial factorizations and the corresponding updating steps are
  omitted.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Bartels, R.H. and Stewart, G.W.  T
      Solution of the matrix equation A X + XB = C.
      Comm. A.C.M., 15, pp. 820-826, 1972.

  [2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
      Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
      Ostrouchov, S., and Sorensen, D.
      LAPACK Users' Guide: Second Edition.
      SIAM, Philadelphia, 1995.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is stable and reliable, since orthogonal
  transformations and Gaussian elimination with complete pivoting
  are used. If INFO = M+N+1, the Sylvester equation is numerically
  singular.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     SB04PD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, NMAX
      PARAMETER        ( MMAX = 20, NMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDU, LDV
      PARAMETER        ( LDA = MMAX, LDB = NMAX, LDC = MMAX,
     $                   LDU = MMAX, LDV = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 1 + 2*MMAX + MAX( 3*MMAX, 5*NMAX,
     $                                            2*( NMAX + MMAX ) ) )
*     .. Local Scalars ..
      CHARACTER        DICO, FACTA, FACTB, TRANA, TRANB
      INTEGER          I, INFO, ISGN, J, M, N
      DOUBLE PRECISION SCALE
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,MMAX), B(LDB,NMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), U(LDU,MMAX), V(LDV,NMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         SB04PD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) M, N, ISGN, DICO, FACTA, FACTB, TRANA, TRANB
      IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) M
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,M ), I = 1,M )
         IF ( LSAME( FACTA, 'F' ) )
     $      READ ( NIN, FMT = * ) ( ( U(I,J), J = 1,M ), I = 1,M )
         IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
            WRITE ( NOUT, FMT = 99991 ) N
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N )
            IF ( LSAME( FACTB, 'F' ) )
     $         READ ( NIN, FMT = * ) ( ( V(I,J), J = 1,N ), I = 1,N )
            READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,M )
*           Find the solution matrix X.
            CALL SB04PD( DICO, FACTA, FACTB, TRANA, TRANB, ISGN, M, N,
     $                   A, LDA, U, LDU, B, LDB, V, LDV, C, LDC, SCALE,
     $                   DWORK, LDWORK, INFO )
*
            IF ( INFO.NE.0 )
     $         WRITE ( NOUT, FMT = 99998 ) INFO
            IF ( INFO.EQ.0 .OR. INFO.EQ.M+N+1 ) THEN
               WRITE ( NOUT, FMT = 99997 )
               DO 20 I = 1, M
                  WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
   20          CONTINUE
               WRITE ( NOUT, FMT = 99995 ) SCALE
               IF ( LSAME( FACTA, 'N' ) ) THEN
                  WRITE ( NOUT, FMT = 99994 )
                  DO 40 I = 1, M
                     WRITE ( NOUT, FMT = 99996 ) ( U(I,J), J = 1,M )
   40             CONTINUE
               END IF
               IF ( LSAME( FACTB, 'N' ) ) THEN
                  WRITE ( NOUT, FMT = 99993 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( V(I,J), J = 1,N )
   60             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB04PD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB04PD = ',I2)
99997 FORMAT (' The solution matrix X is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' Scaling factor = ',F8.4)
99994 FORMAT (/' The orthogonal matrix U is ')
99993 FORMAT (/' The orthogonal matrix V is ')
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' N is out of range.',/' N = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 SB04PD EXAMPLE PROGRAM DATA
   3     2     1     D     N     N     N     N
   2.0   1.0   3.0
   0.0   2.0   1.0
   6.0   1.0   2.0
   2.0   1.0
   1.0   6.0
   2.0   1.0
   1.0   4.0
   0.0   5.0
</PRE>
<B>Program Results</B>
<PRE>
 SB04PD EXAMPLE PROGRAM RESULTS

 The solution matrix X is 
  -0.3430   0.1995
  -0.1856   0.4192
   0.6922  -0.2952

 Scaling factor =   1.0000

 The orthogonal matrix U is 
   0.5396  -0.7797   0.3178
   0.1954  -0.2512  -0.9480
  -0.8190  -0.5736  -0.0168

 The orthogonal matrix V is 
  -0.9732  -0.2298
   0.2298  -0.9732
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>