control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
<HTML>
<HEAD><TITLE>TG01ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TG01ID">TG01ID</A></H2>
<H3>
Orthogonal reduction of a descriptor system to the observability staircase form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute orthogonal transformation matrices Q and Z which
  reduce the N-th order descriptor system (A-lambda*E,B,C)
  to the form

             ( Ano  * )             ( Eno  * )           ( Bno )
    Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ,  Q'*B = (     ) ,
             ( 0   Ao )             ( 0   Eo )           ( Bo  )

       C*Z = ( 0   Co ) ,

  where the NOBSV-th order descriptor system (Ao-lambda*Eo,Bo,Co)
  is a finite and/or infinite observable. The pencil
  Ano - lambda*Eno is regular of order N-NOBSV and contains the
  unobservable finite and/or infinite eigenvalues of the pencil
  A-lambda*E.

  For JOBOBS = 'O' or 'I', the pencil ( Eo-lambda*Ao ) has full
                                      (      Co      )
  column rank NOBSV for all finite lambda and is in a staircase form
  with
                  _      _            _      _
                ( Ek,k   Ek,k-1   ... Ek,2   Ek,1   )
                ( _      _            _      _      )
    ( Eo ) =    ( Ek-1,k Ek-1,k-1 ... Ek-1,2 Ek-1,1 ) ,  (1)
    ( Co )      (     ...         ... _      _      )
                (  0       0      ... E1,2   E1,1   )
                (                            _      )
                (  0       0      ... 0      E0,1   )
                  _          _      _
                ( Ak,k  ...  Ak,2   Ak,1 )
                (       ...  _      _    )
      Ao      = (   0   ...  A2,2   A2,1 ) ,             (2)
                (                   _    )
                (   0   ...    0    A1,1 )
        _
  where Ei-1,i is a CTAU(i-1)-by-CTAU(i) full column rank matrix
                         _
  (with CTAU(0) = P) and Ai,i is a CTAU(i)-by-CTAU(i)
  upper triangular matrix.

  For JOBOBS = 'F', the pencil ( Ao-lambda*Eo ) has full
                               (      Co      )
  column rank NOBSV for all finite lambda and is in a staircase form
  with
                  _      _            _      _
                ( Ak,k   Ak,k-1   ... Ak,2   Ak,1   )
                ( _      _            _      _      )
    ( Ao ) =    ( Ak-1,k Ak-1,k-1 ... Ak-1,2 Ak-1,1 ) ,  (3)
    ( Co )      (     ...         ... _      _      )
                (  0       0      ... A1,2   A1,1   )
                (                            _      )
                (  0       0      ... 0      A0,1   )
                  _          _      _
                ( Ek,k  ...  Ek,2   Ek,1 )
                (       ...  _      _    )
      Eo      = (   0   ...  E2,2   E2,1 ) ,             (4)
                (                   _    )
                (   0   ...    0    E1,1 )
        _
  where Ai-1,i is a CTAU(i-1)-by-CTAU(i) full column rank matrix
                         _
  (with CTAU(0) = P) and Ei,i is a CTAU(i)-by-CTAU(i)
  upper triangular matrix.

  For JOBOBS = 'O', the (N-NOBSV)-by-(N-NOBSV) regular pencil
  Ano - lambda*Eno has the form

                      ( Afno - lambda*Efno         *          )
   Ano - lambda*Eno = (                                       ) ,
                      (        0           Aino - lambda*Eino )

  where:
    1) the NIUOBS-by-NIUOBS regular pencil Aino - lambda*Eino,
       with Aino upper triangular and nonsingular, contains the
       unobservable infinite eigenvalues of A - lambda*E;
    2) the (N-NOBSV-NIUOBS)-by-(N-NOBSV-NIUOBS) regular pencil
       Afno - lambda*Efno, with Efno upper triangular and
       nonsingular, contains the unobservable finite
       eigenvalues of A - lambda*E.

  Note: The significance of the two diagonal blocks can be
        interchanged by calling the routine with the
        arguments A and E interchanged. In this case,
        Aino - lambda*Eino contains the unobservable zero
        eigenvalues of A - lambda*E, while Afno - lambda*Efno
        contains the unobservable nonzero finite and infinite
        eigenvalues of A - lambda*E.

  For JOBOBS = 'F', the pencil Ano - lambda*Eno has the form

     Ano - lambda*Eno = Afno - lambda*Efno ,

  where the regular pencil Afno - lambda*Efno, with Efno
  upper triangular and nonsingular, contains the unobservable
  finite eigenvalues of A - lambda*E.

  For JOBOBS = 'I', the pencil Ano - lambda*Eno has the form

     Ano - lambda*Eno = Aino - lambda*Eino ,

  where the regular pencil Aino - lambda*Eino, with Aino
  upper triangular and nonsingular, contains the unobservable
  nonzero finite and infinite eigenvalues of A - lambda*E.

  The left and/or right orthogonal transformations Q and Z
  performed to reduce the system matrices can be optionally
  accumulated.

  The reduced order descriptor system (Ao-lambda*Eo,Bo,Co) has
  the same transfer-function matrix as the original system
  (A-lambda*E,B,C).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TG01ID( JOBOBS, COMPQ, COMPZ, N, M, P, A, LDA, E, LDE,
     $                   B, LDB, C, LDC, Q, LDQ, Z, LDZ, NOBSV, NIUOBS,
     $                   NLBLCK, CTAU, TOL, IWORK, DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ, JOBOBS
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDZ,
     $                   M, N, NIUOBS, NLBLCK, NOBSV, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            CTAU( * ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, *  ),
     $                   DWORK( * ), E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOBOBS   CHARACTER*1
          = 'O':  separate both finite and infinite unobservable
                  eigenvalues;
          = 'F':  separate only finite unobservable eigenvalues;
          = 'I':  separate only nonzero finite and infinite
                  unobservable eigenvalues.

  COMPQ   CHARACTER*1
          = 'N':  do not compute Q;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'U':  Q must contain an orthogonal matrix Q1 on entry,
                  and the product Q1*Q is returned.

  COMPZ   CHARACTER*1
          = 'N':  do not compute Z;
          = 'I':  Z is initialized to the unit matrix, and the
                  orthogonal matrix Z is returned;
          = 'U':  Z must contain an orthogonal matrix Z1 on entry,
                  and the product Z1*Z is returned.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The dimension of the descriptor state vector; also the
          order of square matrices A and E, the number of rows of
          matrix B, and the number of columns of matrix C.  N &gt;= 0.

  M       (input) INTEGER
          The dimension of descriptor system input vector; also the
          number of columns of matrix B.  M &gt;= 0.

  P       (input) INTEGER
          The dimension of descriptor system output vector; also the
          number of rows of matrix C.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N state matrix A.
          On exit, the leading N-by-N part of this array contains
          the transformed state matrix Q'*A*Z,

                             ( Ano  *  )
                    Q'*A*Z = (         ) ,
                             ( 0    Ao )

          where Ao is NOBSV-by-NOBSV and Ano is
          (N-NOBSV)-by-(N-NOBSV).
          If JOBOBS = 'F', the matrix ( Ao ) is in the observability
                                      ( Co )
          staircase form (3).
          If JOBOBS = 'O' or 'I', the submatrix Ao is upper
          triangular.
          If JOBOBS = 'O', the submatrix Ano has the form

                          ( Afno   *  )
                    Ano = (           ) ,
                          (  0   Aino )

          where the NIUOBS-by-NIUOBS matrix Aino is nonsingular and
          upper triangular.
          If JOBOBS = 'I', Ano is nonsingular and upper triangular.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N descriptor matrix E.
          On exit, the leading N-by-N part of this array contains
          the transformed state matrix Q'*E*Z,

                             ( Eno  *  )
                    Q'*E*Z = (         ) ,
                             ( 0    Eo )

          where Eo is NOBSV-by-NOBSV and Eno is
          (N-NOBSV)-by-(N-NOBSV).
          If JOBOBS = 'O' or 'I', the matrix ( Eo ) is in the
                                             ( Co )
          observability staircase form (1).
          If JOBOBS = 'F', the submatrix Eo is upper triangular.
          If JOBOBS = 'O', the Eno matrix has the form

                          ( Efno   *  )
                    Eno = (           ) ,
                          (  0   Eino )

          where the NIUOBS-by-NIUOBS matrix Eino is nilpotent
          and the (N-NOBSV-NIUOBS)-by-(N-NOBSV-NIUOBS) matrix Efno
          is nonsingular and upper triangular.
          If JOBOBS = 'F', Eno is nonsingular and upper triangular.

  LDE     INTEGER
          The leading dimension of array E.  LDE &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension
          (LDB,MAX(M,P))
          On entry, the leading N-by-M part of this array must
          contain the N-by-M input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix Q'*B.

  LDB     INTEGER
          The leading dimension of array B.
          LDB &gt;= MAX(1,N) if M &gt; 0 or LDB &gt;= 1 if M = 0.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix

                  C*Z = (  0   Co ) ,

          where Co is P-by-NOBSV.
          If JOBOBS = 'O' or 'I', the matrix ( Eo ) is in the
                                             ( Co )
          observability staircase form (1).
          If JOBOBS = 'F', the matrix ( Ao ) is in the observability
                                      ( Co )
          staircase form (3).

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,M,P).

  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
          If COMPQ = 'N': Q is not referenced.
          If COMPQ = 'I': on entry, Q need not be set;
                          on exit, the leading N-by-N part of this
                          array contains the orthogonal matrix Q,
                          where Q' is the product of transformations
                          which are applied to A, E, and B on
                          the left.
          If COMPQ = 'U': on entry, the leading N-by-N part of this
                          array must contain an orthogonal matrix
                          Qc;
                          on exit, the leading N-by-N part of this
                          array contains the orthogonal matrix
                          Qc*Q.

  LDQ     INTEGER
          The leading dimension of array Q.
          LDQ &gt;= 1,        if COMPQ = 'N';
          LDQ &gt;= MAX(1,N), if COMPQ = 'U' or 'I'.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
          If COMPZ = 'N': Z is not referenced.
          If COMPZ = 'I': on entry, Z need not be set;
                          on exit, the leading N-by-N part of this
                          array contains the orthogonal matrix Z,
                          which is the product of transformations
                          applied to A, E, and C on the right.
          If COMPZ = 'U': on entry, the leading N-by-N part of this
                          array must contain an orthogonal matrix
                          Zc;
                          on exit, the leading N-by-N part of this
                          array contains the orthogonal matrix
                          Zc*Z.

  LDZ     INTEGER
          The leading dimension of array Z.
          LDZ &gt;= 1,        if COMPZ = 'N';
          LDZ &gt;= MAX(1,N), if COMPZ = 'U' or 'I'.

  NOBSV   (output) INTEGER
          The order of the reduced matrices Ao and Eo, and the
          number of columns of reduced matrix Co; also the order of
          observable part of the pair (C, A-lambda*E).

  NIUOBS  (output) INTEGER
          For JOBOBS = 'O', the order of the reduced matrices
          Aino and Eino; also the number of unobservable
          infinite eigenvalues of the pencil A - lambda*E.
          For JOBOBS = 'F' or 'I', NIUOBS has no significance
          and is set to zero.

  NLBLCK  (output) INTEGER
          For JOBOBS = 'O' or 'I', the number k, of full column rank
                 _
          blocks Ei-1,i in the staircase form of the pencil
          (Eo-lambda*Ao) (see (1) and (2)).
          (    Co      )
          For JOBOBS = 'F', the number k, of full column rank blocks
          _
          Ai-1,i in the staircase form of the pencil (Ao-lambda*Eo)
                                                     (     Co     )
          (see (3) and (4)).

  CTAU    (output) INTEGER array, dimension (N)
          CTAU(i), for i = 1, ..., NLBLCK, is the column dimension
                                        _         _
          of the full column rank block Ei-1,i or Ai-1,i in the
          staircase form (1) or (3) for JOBOBS = 'O' or 'I', or
          for JOBOBS = 'F', respectively.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          The tolerance to be used in rank determinations when
          transforming (A'-lambda*E',C')'. If the user sets TOL &gt; 0,
          then the given value of TOL is used as a lower bound for
          reciprocal condition numbers in rank determinations; a
          (sub)matrix whose estimated condition number is less than
          1/TOL is considered to be of full rank.  If the user sets
          TOL &lt;= 0, then an implicitly computed, default tolerance,
          defined by  TOLDEF = N*N*EPS,  is used instead, where EPS
          is the machine precision (see LAPACK Library routine
          DLAMCH).  TOL &lt; 1.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (P)

  DWORK   DOUBLE PRECISION array, dimension (MAX(N,2*P))

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The subroutine is based on the dual of the reduction
  algorithms of [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] A. Varga
      Computation of Irreducible Generalized State-Space
      Realizations.
      Kybernetika, vol. 26, pp. 89-106, 1990.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable and requires
  0( N**3 )  floating point operations.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  If the system matrices A, E and C are badly scaled, it is
  generally recommendable to scale them with the SLICOT routine
  TG01AD, before calling TG01ID.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TG01ID EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          LMAX, NMAX, MMAX, PMAX
      PARAMETER        ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          MPMX
      PARAMETER        ( MPMX = MAX( MMAX, PMAX ) )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = LMAX, LDB = LMAX, LDC = MAX(MMAX,PMAX),
     $                   LDE = LMAX, LDQ = LMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( 1, NMAX, 2*PMAX ) )
*     .. Local Scalars ..
      CHARACTER*1      COMPQ, COMPZ, JOBOBS
      INTEGER          I, INFO, J, M, N, NOBSV, NIUOBS, NLBLCK, P
      DOUBLE PRECISION TOL
*     .. Local Arrays ..
      INTEGER          IWORK(MMAX), CTAU(NMAX)
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MPMX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,LMAX),
     $                 Z(LDZ,NMAX)
*     .. External Subroutines ..
      EXTERNAL         TG01ID
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, TOL, JOBOBS
      COMPQ = 'I'
      COMPZ = 'I'
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99987 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99986 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Find the transformed descriptor system (A-lambda E,B,C).
               CALL TG01ID( JOBOBS, COMPQ, COMPZ, N, M, P, A, LDA,
     $                      E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ,
     $                      NOBSV, NIUOBS, NLBLCK, CTAU, TOL, IWORK,
     $                      DWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99994 ) NOBSV, NIUOBS
                  WRITE ( NOUT, FMT = 99985 )
                  WRITE ( NOUT, FMT = 99984 ) ( CTAU(I), I = 1,NLBLCK )
                  WRITE ( NOUT, FMT = 99997 )
                  DO 10 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10             CONTINUE
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 30 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 40 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 50 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,N )
   50             CONTINUE
                  WRITE ( NOUT, FMT = 99990 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01ID = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Dimension of observable part   =', I5/
     $        ' Number of unobservable infinite eigenvalues =', I5)
99993 FORMAT (/' The transformed input/state matrix Q''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99989 FORMAT (/' L is out of range.',/' L = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
99985 FORMAT (/' The staircase form column dimensions are ' )
99984 FORMAT (10I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
TG01ID EXAMPLE PROGRAM DATA
  7    2     3     0.0    O
     2     0     0     0     0     0     0
     0     1     0     0     0     1     0
     2     0     0     2     0     0     0
     0     0     1     0     1     0     1
    -1     1     0    -1     0     1     0
     3     0     0     3     0     0     0
     1     0     1     1     1     0     1
     0     0     0     0     0     0     1
     0     0     0     0     0     0     3
     1     0     0     0     0     1     0
     0     0     0     0     1     0     2
     0     0     0     0     0    -1     0
     0     1     0     0     0     0     0
     0     0     1     1     0     0     0
     1     0
     0    -1
     0     1
     1     0
     0    -1
     0     1
     1     0
     2     0     0     0     0     0     1
     1     0     0     0     0     0     2
     0     0     0     0     0     0     3

</PRE>
<B>Program Results</B>
<PRE>
 TG01ID EXAMPLE PROGRAM RESULTS

 Dimension of observable part   =    3
 Number of unobservable infinite eigenvalues =    1

 The staircase form column dimensions are 
    2    1

 The transformed state dynamics matrix Q'*A*Z is 
   0.2177   0.2414   0.5742   0.4342   0.0000  -0.4342   0.4666
   0.2022   0.2242   0.5334  -0.2924  -0.7723   0.2924   0.4334
  -0.5892  -0.6533  -1.5540   0.8520  -0.2651  -0.8520  -1.2627
   0.0000   0.0000   0.0000   3.7417   0.3780  -3.7417   0.0000
   0.0000   0.0000   0.0000   0.0000   1.7862   0.0000   0.0000
   0.0000   0.0000   0.0000   0.0000   0.0000   2.0000   0.0000
   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000

 The transformed descriptor matrix Q'*E*Z is 
   1.0000   0.0000   0.0000   0.4342   0.0000   0.0000   1.8016
   0.0000   1.1937  -0.1496  -0.2924   0.3861   0.5461   0.2819
   0.0000   0.0000  -1.0260   0.8520   0.1325   0.1874  -0.8214
   0.0000   0.0000   0.0000   0.0000  -1.1339  -0.5345   0.0000
   0.0000   0.0000   0.0000   0.0000  -0.1333   0.3770   2.3752
   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   1.0000
   0.0000   0.0000   0.0000   0.0000  -0.1728   0.4887  -1.8325

 The transformed input/state matrix Q'*B is 
   0.4666   0.0000
   0.4334   0.5461
  -1.2627   0.1874
   0.0000  -1.6036
   0.0000  -0.9803
   1.0000   0.0000
   0.0000   0.3665

 The transformed state/output matrix C*Z is 
   0.0000   0.0000   0.0000   0.0000   0.0000   2.0000   1.0000
   0.0000   0.0000   0.0000   0.0000   0.0000   1.0000   2.0000
   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   3.0000

 The left transformation matrix Q is 
   0.0000   0.0000   0.0000   0.0000   0.0000   1.0000   0.0000
   0.0000   0.0000   0.0000   0.0000   0.7917   0.0000  -0.6108
   0.0000   0.5461   0.1874  -0.5345   0.3770   0.0000   0.4887
   0.9008   0.1410  -0.4107   0.0000   0.0000   0.0000   0.0000
   0.0000  -0.5461  -0.1874   0.2673   0.4713   0.0000   0.6108
   0.0000  -0.5461  -0.1874  -0.8018  -0.0943   0.0000  -0.1222
  -0.4342   0.2924  -0.8520   0.0000   0.0000   0.0000   0.0000

 The right transformation matrix Z is 
   0.0000   0.0000   0.0000   0.0000   0.0000   1.0000   0.0000
   0.0000  -0.6519   0.2740   0.0000   0.7071   0.0000   0.0000
  -0.4342   0.3491   0.8304   0.0000   0.0000   0.0000   0.0000
   0.0000   0.0000   0.0000  -1.0000   0.0000   0.0000   0.0000
   0.9008   0.1683   0.4003   0.0000   0.0000   0.0000   0.0000
   0.0000   0.6519  -0.2740   0.0000   0.7071   0.0000   0.0000
   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   1.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>