control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
<HTML>
<HEAD><TITLE>MB04DP - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04DP">MB04DP</A></H2>
<H3>
Balancing a real skew-Hamiltonian/Hamiltonian pencil, exploiting the structure 
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To balance the 2*N-by-2*N skew-Hamiltonian/Hamiltonian pencil
  aS - bH, with

        (  A  D  )         (  C  V  )
    S = (        ) and H = (        ),  A, C N-by-N,             (1)
        (  E  A' )         (  W -C' )

  where D and E are skew-symmetric, and V and W are symmetric
  matrices. This involves, first, permuting aS - bH by a symplectic
  equivalence transformation to isolate eigenvalues in the first
  1:ILO-1 elements on the diagonal of A and C; and second, applying
  a diagonal equivalence transformation to make the pairs of rows
  and columns ILO:N and N+ILO:2*N as close in 1-norm as possible.
  Both steps are optional. Balancing may reduce the 1-norms of the
  matrices S and H.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04DP( JOB, N, THRESH, A, LDA, DE, LDDE, C, LDC, VW,
     $                   LDVW, ILO, LSCALE, RSCALE, DWORK, IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            ILO, INFO, IWARN, LDA, LDC, LDDE, LDVW, N
      DOUBLE PRECISION   THRESH
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), C(LDC,*), DE(LDDE,*), DWORK(*),
     $                   LSCALE(*), RSCALE(*), VW(LDVW,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOB     CHARACTER*1
          Specifies the operations to be performed on S and H:
          = 'N':  none:  simply set ILO = 1, LSCALE(I) = 1.0 and
                  RSCALE(I) = 1.0 for i = 1,...,N.
          = 'P':  permute only;
          = 'S':  scale only;
          = 'B':  both permute and scale.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of matrices A, D, E, C, V, and W.  N &gt;= 0.

  THRESH  (input) DOUBLE PRECISION
          If JOB = 'S' or JOB = 'B', and THRESH &gt;= 0, threshold
          value for magnitude of the elements to be considered in
          the scaling process: elements with magnitude less than or
          equal to THRESH*MXNORM are ignored for scaling, where
          MXNORM is the maximum of the 1-norms of the original
          submatrices S(s,s) and H(s,s), with s = [ILO:N,N+ILO:2*N].
          If THRESH &lt; 0, the subroutine finds the scaling factors
          for which some conditions, detailed below, are fulfilled.
          A sequence of increasing strictly positive threshold
          values is used.
          If THRESH = -1, the condition is that
             max( norm(H(s,s),1)/norm(S(s,s),1),
                  norm(S(s,s),1)/norm(H(s,s),1) )                (1)
          has the smallest value, for the threshold values used,
          where S(s,s) and H(s,s) are the scaled submatrices.
          If THRESH = -2, the norm ratio reduction (1) is tried, but
          the subroutine may return IWARN = 1 and reset the scaling
          factors to 1, if this seems suitable. See the description
          of the argument IWARN and FURTHER COMMENTS.
          If THRESH = -3, the condition is that
             norm(H(s,s),1)*norm(S(s,s),1)                       (2)
          has the smallest value for the scaled submatrices.
          If THRESH = -4, the norm reduction in (2) is tried, but
          the subroutine may return IWARN = 1 and reset the scaling
          factors to 1, as for THRESH = -2 above.
          If THRESH = -VALUE, with VALUE &gt;= 10, the condition
          numbers of the left and right scaling transformations will
          be bounded by VALUE, i.e., the ratios between the largest
          and smallest entries in [LSCALE(ILO:N); RSCALE(ILO:N)]
          will be at most VALUE. VALUE should be a power of 10.
          If JOB = 'N' or JOB = 'P', the value of THRESH is
          irrelevant.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.
          On exit, the leading N-by-N part of this array contains
          the matrix A of the balanced skew-Hamiltonian matrix S.
          In particular, the strictly lower triangular part of the
          first ILO-1 columns of A is zero.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  DE      (input/output) DOUBLE PRECISION array, dimension
                         (LDDE, N+1)
          On entry, the leading N-by-N strictly lower triangular
          part of this array must contain the strictly lower
          triangular part of the skew-symmetric matrix E, and the
          N-by-N strictly upper triangular part of the submatrix
          in the columns 2 to N+1 of this array must contain the
          strictly upper triangular part of the skew-symmetric
          matrix D.
          The entries on the diagonal and the first superdiagonal of
          this array need not be set, but are assumed to be zero.
          On exit, the leading N-by-N strictly lower triangular
          part of this array contains the strictly lower triangular
          part of the balanced matrix E, and the N-by-N strictly
          upper triangular part of the submatrix in the columns 2 to
          N+1 of this array contains the strictly upper triangular
          part of the balanced matrix D. In particular, the strictly
          lower triangular part of the first ILO-1 columns of DE is
          zero.

  LDDE    INTEGER
          The leading dimension of the array DE.  LDDE &gt;= MAX(1, N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC, N)
          On entry, the leading N-by-N part of this array must
          contain the matrix C.
          On exit, the leading N-by-N part of this array contains
          the matrix C of the balanced Hamiltonian matrix H.
          In particular, the strictly lower triangular part of the
          first ILO-1 columns of C is zero.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= MAX(1, N).

  VW      (input/output) DOUBLE PRECISION array, dimension
                         (LDVW, N+1)
          On entry, the leading N-by-N lower triangular part of
          this array must contain the lower triangular part of the
          symmetric matrix W, and the N-by-N upper triangular
          part of the submatrix in the columns 2 to N+1 of this
          array must contain the upper triangular part of the
          symmetric matrix V.
          On exit, the leading N-by-N lower triangular part of this
          array contains the lower triangular part of the balanced
          matrix W, and the N-by-N upper triangular part of the
          submatrix in the columns 2 to N+1 of this array contains
          the upper triangular part of the balanced matrix V. In
          particular, the lower triangular part of the first ILO-1
          columns of VW is zero.

  LDVW    INTEGER
          The leading dimension of the array VW.  LDVW &gt;= MAX(1, N).

  ILO     (output) INTEGER
          ILO-1 is the number of deflated eigenvalues in the
          balanced skew-Hamiltonian/Hamiltonian matrix pencil.
          ILO is set to 1 if JOB = 'N' or JOB = 'S'.

  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
          Details of the permutations of S and H and scaling applied
          to A, D, C, and V from the left. For j = 1,...,ILO-1 let
          P(j) = LSCALE(j). If P(j) &lt;= N, then rows and columns P(j)
          and P(j)+N are interchanged with rows and columns j and
          j+N, respectively. If P(j) &gt; N, then row and column P(j)-N
          are interchanged with row and column j+N by a generalized
          symplectic permutation. For j = ILO,...,N the j-th element
          of LSCALE contains the factor of the scaling applied to
          row j of the matrices A, D, C, and V.

  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
          Details of the permutations of S and H and scaling applied
          to A, E, C, and W from the right. For j = 1,...,ILO-1 let
          P(j) = RSCALE(j). If P(j) &lt;= N, then rows and columns P(j)
          and P(j)+N are interchanged with rows and columns j and
          j+N, respectively. If P(j) &gt; N, then row and column P(j)-N
          are interchanged with row and column j+N by a generalized
          symplectic permutation. For j = ILO,...,N the j-th element
          of RSCALE contains the factor of the scaling applied to
          column j of the matrices A, E, C, and W.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK) where
          LDWORK = 0,   if  JOB = 'N' or JOB = 'P', or N = 0;
          LDWORK = 6*N, if (JOB = 'S' or JOB = 'B') and THRESH &gt;= 0;
          LDWORK = 8*N, if (JOB = 'S' or JOB = 'B') and THRESH &lt;  0.
          On exit, if JOB = 'S' or JOB = 'B', DWORK(1) and DWORK(2)
          contain the initial 1-norms of S(s,s) and H(s,s), and
          DWORK(3) and DWORK(4) contain their final 1-norms,
          respectively. Moreover, DWORK(5) contains the THRESH value
          used (irrelevant if IWARN = 1 or ILO = N).

</PRE>
<B>Warning Indicator</B>
<PRE>
  IWARN   INTEGER
          = 0:  no warning;
          = 1:  scaling has been requested, for THRESH = -2 or
                THRESH = -4, but it most probably would not improve
                the accuracy of the computed solution for a related
                eigenproblem (since maximum norm increased
                significantly compared to the original pencil
                matrices and (very) high and/or small scaling
                factors occurred). The returned scaling factors have
                been reset to 1, but information about permutations,
                if requested, has been preserved.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit.
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Balancing consists of applying a (symplectic) equivalence
  transformation to isolate eigenvalues and/or to make the 1-norms
  of each pair of rows and columns indexed by s of S and H nearly
  equal. If THRESH &lt; 0, a search is performed to find those scaling
  factors giving the smallest norm ratio or product defined above
  (see the description of the parameter THRESH).

  Assuming JOB = 'S', let Dl and Dr be diagonal matrices containing
  the vectors LSCALE and RSCALE, respectively. The returned matrices
  are obtained using the equivalence transformation

    ( Dl  0 ) ( A  D  ) ( Dr  0 )   ( Dl  0 ) ( C  V  ) ( Dr  0 )
    (       ) (       ) (       ),  (       ) (       ) (       ).
    ( 0  Dr ) ( E  A' ) ( 0  Dl )   ( 0  Dr ) ( W -C' ) ( 0  Dl )

  For THRESH = 0, the routine returns essentially the same results
  as the LAPACK subroutine DGGBAL [1]. Setting THRESH &lt; 0, usually
  gives better results than DGGBAL for badly scaled matrix pencils.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
      Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
      Ostrouchov, S., and Sorensen, D.
      LAPACK Users' Guide: Second Edition.
      SIAM, Philadelphia, 1995.

  [2] Benner, P.
      Symplectic balancing of Hamiltonian matrices.
      SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2001.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The transformations used preserve the skew-Hamiltonian/Hamiltonian
  structure and do not introduce significant rounding errors.
  No rounding errors appear if JOB = 'P'. If T is the global
  transformation matrix applied to the right, then J'*T*J is the
  global transformation matrix applied to the left, where
  J = [ 0 I; -I 0 ], with blocks of order N.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  If THRESH = -2, the increase of the maximum norm of the scaled
  submatrices, compared to the maximum norm of the initial
  submatrices, is bounded by MXGAIN = 100.
  If THRESH = -2, or THRESH = -4, the maximum condition number of
  the scaling transformations is bounded by MXCOND = 1/SQRT(EPS),
  where EPS is the machine precision (see LAPACK Library routine
  DLAMCH).

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB04DP EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX
      PARAMETER        ( NMAX = 10 )
      INTEGER          LDA, LDC, LDDE, LDVW
      PARAMETER        ( LDA  = NMAX, LDC = NMAX, LDDE = NMAX,
     $                   LDVW = NMAX )
*     .. Local Scalars ..
      CHARACTER*1      JOB
      INTEGER          I, ILO, INFO, IWARN, J, N
      DOUBLE PRECISION THRESH
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA, NMAX), DWORK(8*NMAX), C(LDC, NMAX),
     $                 DE(LDDE, NMAX+1), LSCALE(NMAX), RSCALE(NMAX),
     $                 VW(LDVW, NMAX+1)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         MB04DP
*     .. Executable Statements ..
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * )  N, JOB, THRESH
      IF( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99985 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J),  J = 1,N ),   I = 1,N )
         READ ( NIN, FMT = * ) ( ( DE(I,J), J = 1,N+1 ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( C(I,J),  J = 1,N ),   I = 1,N )
         READ ( NIN, FMT = * ) ( ( VW(I,J), J = 1,N+1 ), I = 1,N )
         CALL MB04DP( JOB, N, THRESH, A, LDA, DE, LDDE, C, LDC, VW,
     $                LDVW, ILO, LSCALE, RSCALE, DWORK, IWARN, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99997 )
            DO 10  I = 1, N
               WRITE ( NOUT, FMT = 99993 ) ( A(I,J), J = 1,N )
10          CONTINUE
            WRITE ( NOUT, FMT = 99996 )
            DO 20  I = 1, N
               WRITE ( NOUT, FMT = 99993 ) ( DE(I,J), J = 1,N+1 )
20          CONTINUE
            WRITE ( NOUT, FMT = 99995 )
            DO 30  I = 1, N
               WRITE ( NOUT, FMT = 99993 ) ( C(I,J), J = 1,N )
30          CONTINUE
            WRITE ( NOUT, FMT = 99994 )
            DO 40  I = 1, N
               WRITE ( NOUT, FMT = 99993 ) ( VW(I,J), J = 1,N+1 )
40          CONTINUE
            WRITE ( NOUT, FMT = 99992 )  ILO
            WRITE ( NOUT, FMT = 99991 )
            WRITE ( NOUT, FMT = 99993 ) ( LSCALE(I), I = 1,N )
            WRITE ( NOUT, FMT = 99990 )
            WRITE ( NOUT, FMT = 99993 ) ( RSCALE(I), I = 1,N )
            IF ( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
               IF ( .NOT.( THRESH.EQ.-2 .OR. THRESH.EQ.-4 ) ) THEN
                  WRITE ( NOUT, FMT = 99989 )
                  WRITE ( NOUT, FMT = 99993 ) ( DWORK(I), I = 1,2 )
                  WRITE ( NOUT, FMT = 99988 )
                  WRITE ( NOUT, FMT = 99993 ) ( DWORK(I), I = 3,4 )
                  WRITE ( NOUT, FMT = 99987 )
                  WRITE ( NOUT, FMT = 99993 ) ( DWORK(5) )
               ELSE
                  WRITE ( NOUT, FMT = 99986 ) IWARN
               END IF
            END IF
         END IF
      END IF
*
99999 FORMAT (' MB04DP EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB04DP = ',I2)
99997 FORMAT (' The balanced matrix A is ')
99996 FORMAT (/' The balanced matrix DE is ')
99995 FORMAT (' The balanced matrix C is ')
99994 FORMAT (/' The balanced matrix VW is ')
99993 FORMAT (20(1X,G12.4))
99992 FORMAT (/' ILO = ',I4)
99991 FORMAT (/' The permutations and left scaling factors are ')
99990 FORMAT (/' The permutations and right scaling factors are ')
99989 FORMAT (/' The initial 1-norms of the (sub)matrices are ')
99988 FORMAT (/' The final 1-norms of the (sub)matrices are ')
99987 FORMAT (/' The threshold value finally used is ')
99986 FORMAT (/' IWARN on exit from MB04DP = ',I2)
99985 FORMAT (/' N is out of range.',/' N = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
MB04DP EXAMPLE PROGRAM DATA
       2       B      -3
         1         0
         0         1
         0         0         0
         0         0         0
         1         0
         0        -2
        -1  -1.0e-12         0
        -1        -1         0

</PRE>
<B>Program Results</B>
<PRE>
 MB04DP EXAMPLE PROGRAM RESULTS

 The balanced matrix A is 
    1.000        0.000    
    0.000        1.000    

 The balanced matrix DE is 
    0.000        0.000        0.000    
    0.000        0.000        0.000    
 The balanced matrix C is 
    2.000        1.000    
    0.000        1.000    

 The balanced matrix VW is 
    0.000        1.000        0.000    
    0.000       -1.000      -0.1000E-11

 ILO =    2

 The permutations and left scaling factors are 
    4.000        1.000    

 The permutations and right scaling factors are 
    4.000        1.000    

 The initial 1-norms of the (sub)matrices are 
    1.000        2.000    

 The final 1-norms of the (sub)matrices are 
    1.000        2.000    

 The threshold value finally used is 
   -3.000    
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>