<HTML>
<HEAD><TITLE>MB03CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB03CD">MB03CD</A></H2>
<H3>
Exchanging eigenvalues of a real 2-by-2, 3-by-3 or 4-by-4 block upper triangular pencil (factored version)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute orthogonal matrices Q1, Q2, Q3 for a real 2-by-2,
3-by-3, or 4-by-4 regular block upper triangular pencil
( A11 A12 ) ( B11 B12 ) ( D11 D12 )
aAB - bD = a ( ) ( ) - b ( ), (1)
( 0 A22 ) ( 0 B22 ) ( 0 D22 )
such that the pencil a(Q3' A Q2 )(Q2' B Q1 ) - b(Q3' D Q1) is
still in block upper triangular form, but the eigenvalues in
Spec(A11 B11, D11), Spec(A22 B22, D22) are exchanged, where
Spec(X,Y) denotes the spectrum of the matrix pencil (X,Y), and M'
denotes the transpose of the matrix M.
Optionally, to upper triangularize the real regular pencil in
block lower triangular form
( A11 0 ) ( B11 0 ) ( D11 0 )
aAB - bD = a ( ) ( ) - b ( ), (2)
( A21 A22 ) ( B21 B22 ) ( D21 D22 )
while keeping the eigenvalues in the same diagonal position.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB03CD( UPLO, N1, N2, PREC, A, LDA, B, LDB, D, LDD, Q1,
$ LDQ1, Q2, LDQ2, Q3, LDQ3, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LDB, LDD, LDQ1, LDQ2, LDQ3, LDWORK,
$ N1, N2
DOUBLE PRECISION PREC
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( LDD, * ),
$ DWORK( * ), Q1( LDQ1, * ), Q2( LDQ2, * ),
$ Q3( LDQ3, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
UPLO CHARACTER*1
Specifies if the pencil is in lower or upper block
triangular form on entry, as follows:
= 'U': Upper block triangular, eigenvalues are exchanged
on exit;
= 'L': Lower block triangular, eigenvalues are not
exchanged on exit.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N1 (input/output) INTEGER
Size of the upper left block, N1 <= 2.
If UPLO = 'U' and INFO = 0, or UPLO = 'L' and INFO <> 0,
N1 and N2 are exchanged on exit; otherwise, N1 is
unchanged on exit.
N2 (input/output) INTEGER
Size of the lower right block, N2 <= 2.
If UPLO = 'U' and INFO = 0, or UPLO = 'L' and INFO <> 0,
N1 and N2 are exchanged on exit; otherwise, N2 is
unchanged on exit.
PREC (input) DOUBLE PRECISION
The machine precision, (relative machine precision)*base.
See the LAPACK Library routine DLAMCH.
A (input or input/output) DOUBLE PRECISION array, dimension
(LDA, N1+N2)
On entry, the leading (N1+N2)-by-(N1+N2) part of this
array must contain the matrix A of the pencil aAB - bD.
The (2,1) block, if UPLO = 'U', or the (1,2) block, if
UPLO = 'L', need not be set to zero.
On exit, if N1 = N2 = 1, this array contains the matrix
[ 0 1 ]
J' A J, where J = [ -1 0 ]; otherwise, this array is
unchanged on exit.
LDA INTEGER
The leading dimension of the array A. LDA >= N1+N2.
B (input or input/output) DOUBLE PRECISION array, dimension
(LDB, N1+N2)
On entry, the leading (N1+N2)-by-(N1+N2) part of this
array must contain the matrix B of the pencil aAB - bD.
The (2,1) block, if UPLO = 'U', or the (1,2) block, if
UPLO = 'L', need not be set to zero.
On exit, if N1 = N2 = 1, this array contains the matrix
J' B J; otherwise, this array is unchanged on exit.
LDB INTEGER
The leading dimension of the array B. LDB >= N1+N2.
D (input/output) DOUBLE PRECISION array, dimension
(LDD, N1+N2)
On entry, the leading (N1+N2)-by-(N1+N2) part of this
array must contain the matrix D of the pencil aAB - bD.
On exit, if N1 = 2 or N2 = 2, the leading
(N1+N2)-by-(N1+N2) part of this array contains the
transformed matrix D in real Schur form. If N1 = 1 and
N2 = 1, this array contains the matrix J' D J.
LDD INTEGER
The leading dimension of the array D. LDD >= N1+N2.
Q1 (output) DOUBLE PRECISION array, dimension (LDQ1, N1+N2)
The leading (N1+N2)-by-(N1+N2) part of this array contains
the first orthogonal transformation matrix.
LDQ1 INTEGER
The leading dimension of the array Q1. LDQ1 >= N1+N2.
Q2 (output) DOUBLE PRECISION array, dimension (LDQ2, N1+N2)
The leading (N1+N2)-by-(N1+N2) part of this array contains
the second orthogonal transformation matrix.
LDQ2 INTEGER
The leading dimension of the array Q2. LDQ2 >= N1+N2.
Q3 (output) DOUBLE PRECISION array, dimension (LDQ3, N1+N2)
The leading (N1+N2)-by-(N1+N2) part of this array contains
the third orthogonal transformation matrix.
LDQ3 INTEGER
The leading dimension of the array Q3. LDQ3 >= N1+N2.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
If N1+N2 = 2 then DWORK is not referenced.
LDWORK INTEGER
The dimension of the array DWORK.
If N1+N2 = 2, then LDWORK = 0; otherwise,
LDWORK >= 16*N1 + 10*N2 + 23, UPLO = 'U';
LDWORK >= 10*N1 + 16*N2 + 23, UPLO = 'L'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: succesful exit;
= 1: the QZ iteration failed in the LAPACK routine DGGEV;
= 2: another error occured while executing a routine in
DGGEV;
= 3: the QZ iteration failed in the LAPACK routine DGGES;
= 4: another error occured during execution of DGGES;
= 5: reordering of aA*B - bD in the LAPACK routine DTGSEN
failed because the transformed matrix pencil
aA*B - bD would be too far from generalized Schur
form; the problem is very ill-conditioned.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The algorithm uses orthogonal transformations as described in [2]
(page 21). The QZ algorithm is used for N1 = 2 or N2 = 2, but it
always acts on an upper block triangular pencil.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
Numerical computation of deflating subspaces of skew-
Hamiltonian/Hamiltonian pencils.
SIAM J. Matrix Anal. Appl., 24 (1), pp. 165-190, 2002.
[2] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
Eigenproblems.
Tech. Rep., Technical University Chemnitz, Germany,
Nov. 2007.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is numerically backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>