control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>MB04IZ - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04IZ">MB04IZ</A></H2>
<H3>
QR factorization of a matrix with a lower left-hand side zero triangle (complex case)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute a QR factorization of an n-by-m matrix A (A = Q * R),
  having a p-by-min(p,m) zero triangle in the lower left-hand side
  corner, as shown below, for n = 8, m = 7, and p = 2:

         [ x x x x x x x ]
         [ x x x x x x x ]
         [ x x x x x x x ]
         [ x x x x x x x ]
     A = [ x x x x x x x ],
         [ x x x x x x x ]
         [ 0 x x x x x x ]
         [ 0 0 x x x x x ]

  and optionally apply the transformations to an n-by-l matrix B
  (from the left). The problem structure is exploited. This
  computation is useful, for instance, in combined measurement and
  time update of one iteration of the time-invariant Kalman filter
  (square root information filter).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04IZ( N, M, P, L, A, LDA, B, LDB, TAU, ZWORK, LZWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, L, LDA, LDB, LZWORK, M, N, P
C     .. Array Arguments ..
      COMPLEX*16        A(LDA,*), B(LDB,*), TAU(*), ZWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The number of rows of the matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of the matrix A.  M &gt;= 0.

  P       (input) INTEGER
          The order of the zero triagle.  P &gt;= 0.

  L       (input) INTEGER
          The number of columns of the matrix B.  L &gt;= 0.

  A       (input/output) COMPLEX*16 array, dimension (LDA,M)
          On entry, the leading N-by-M part of this array must
          contain the matrix A. The elements corresponding to the
          zero P-by-MIN(P,M) lower trapezoidal/triangular part
          (if P &gt; 0) are not referenced.
          On exit, the elements on and above the diagonal of this
          array contain the MIN(N,M)-by-M upper trapezoidal matrix
          R (R is upper triangular, if N &gt;= M) of the QR
          factorization, and the relevant elements below the
          diagonal contain the trailing components (the vectors v,
          see Method) of the elementary reflectors used in the
          factorization.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input/output) COMPLEX*16 array, dimension (LDB,L)
          On entry, the leading N-by-L part of this array must
          contain the matrix B.
          On exit, the leading N-by-L part of this array contains
          the updated matrix B.
          If L = 0, this array is not referenced.

  LDB     INTEGER
          The leading dimension of array B.
          LDB &gt;= MAX(1,N) if L &gt; 0;
          LDB &gt;= 1        if L = 0.

  TAU     (output) COMPLEX*16 array, dimension MIN(N,M)
          The scalar factors of the elementary reflectors used.

</PRE>
<B>Workspace</B>
<PRE>
  ZWORK   COMPLEX*16 array, dimension (LZWORK)
          On exit, if INFO = 0, ZWORK(1) returns the optimal value
          of LZWORK.

  LZWORK  The length of the array ZWORK.
          LZWORK &gt;= MAX(1,M-1,M-P,L).
          For optimum performance LZWORK should be larger.

          If LZWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          ZWORK array, returns this value as the first entry of
          the ZWORK array, and no error message related to LZWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine uses min(N,M) Householder transformations exploiting
  the zero pattern of the matrix.  A Householder matrix has the form

                                  ( 1 ),
     H  = I - tau *u *u',    u  = ( v )
      i          i  i  i      i   (  i)

  where v  is an (N-P+I-2)-vector.  The components of v  are stored
         i                                             i
  in the i-th column of A, beginning from the location i+1, and
  tau  is stored in TAU(i).
     i

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is backward stable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>