control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
<HTML>
<HEAD><TITLE>TG01MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TG01MD">TG01MD</A></H2>
<H3>
Finite-infinite generalized real Schur form decomposition of a descriptor system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute orthogonal transformation matrices Q and Z which
  reduce the regular pole pencil A-lambda*E of the descriptor system
  (A-lambda*E,B,C) to the form (if JOB = 'F')

             ( Af  *  )             ( Ef  *  )
    Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ,                 (1)
             ( 0   Ai )             ( 0   Ei )

  or to the form (if JOB = 'I')

             ( Ai  *  )             ( Ei  *  )
    Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ,                 (2)
             ( 0   Af )             ( 0   Ef )

  where the pair (Af,Ef) is in a generalized real Schur form, with
  Ef nonsingular and upper triangular and Af in real Schur form.
  The subpencil Af-lambda*Ef contains the finite eigenvalues.
  The pair (Ai,Ei) is in a generalized real Schur form with
  both Ai and Ei upper triangular. The subpencil Ai-lambda*Ei,
  with Ai nonsingular and Ei nilpotent contains the infinite
  eigenvalues and is in a block staircase form (see METHOD).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $                   NIBLCK, IBLCK, TOL, IWORK, DWORK, LDWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M,
     $                   N, ND, NF, NIBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IBLCK( * ), IWORK(*)
      DOUBLE PRECISION   A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                   BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                   Q(LDQ,*), Z(LDZ,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOB     CHARACTER*1
          = 'F':  perform the finite-infinite separation;
          = 'I':  perform the infinite-finite separation.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The number of rows of the matrix B, the number of columns
          of the matrix C and the order of the square matrices A
          and E.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of the matrix B.  M &gt;= 0.

  P       (input) INTEGER
          The number of rows of the matrix C.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N state matrix A.
          On exit, the leading N-by-N part of this array contains
          the transformed state matrix Q'*A*Z in the form

          ( Af  *  )                    ( Ai  *  )
          (        ) for JOB = 'F', or  (        )  for JOB = 'I',
          ( 0   Ai )                    ( 0   Af )

          where Af is an NF-by-NF matrix in real Schur form, and Ai
          is an (N-NF)-by-(N-NF) nonsingular and upper triangular
          matrix. Ai has a block structure as in (3) or (4), where
          A0,0 is ND-by-ND and Ai,i , for i = 1, ..., NIBLCK, is
          IBLCK(i)-by-IBLCK(i). (See METHOD.)

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N descriptor matrix E.
          On exit, the leading N-by-N part of this array contains
          the transformed descriptor matrix Q'*E*Z in the form

          ( Ef  *  )                    ( Ei  *  )
          (        ) for JOB = 'F', or  (        )  for JOB = 'I',
          ( 0   Ei )                    ( 0   Ef )

          where Ef is an NF-by-NF nonsingular and upper triangular
          matrix, and Ei is an (N-NF)-by-(N-NF) nilpotent matrix in
          an upper triangular block form as in (3) or (4).

  LDE     INTEGER
          The leading dimension of the array E.  LDE &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the N-by-M input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix Q'*B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix C*Z.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= MAX(1,P).

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
          ALPHAR(1:NF) will be set to the real parts of the diagonal
          elements of Af that would result from reducing A and E to
          the Schur form, and then further reducing both of them to
          triangular form using unitary transformations, subject to
          having the diagonal of E positive real.  Thus, if Af(j,j)
          is in a 1-by-1 block (i.e., Af(j+1,j) = Af(j,j+1) = 0),
          then ALPHAR(j) = Af(j,j). Note that the (real or complex)
          values (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are
          the finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
          ALPHAI(1:NF) will be set to the imaginary parts of the
          diagonal elements of Af that would result from reducing A
          and E to Schur form, and then further reducing both of
          them to triangular form using unitary transformations,
          subject to having the diagonal of E positive real. Thus,
          if Af(j,j) is in a 1-by-1 block (see above), then
          ALPHAI(j) = 0. Note that the (real or complex) values
          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
          finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  BETA    (output) DOUBLE PRECISION array, dimension (N)
          BETA(1:NF) will be set to the (real) diagonal elements of
          Ef that would result from reducing A and E to Schur form,
          and then further reducing both of them to triangular form
          using unitary transformations, subject to having the
          diagonal of E positive real. Thus, if Af(j,j) is in a
          1-by-1 block (see above), then BETA(j) = Ef(j,j).
          Note that the (real or complex) values
          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
          finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
          The leading N-by-N part of this array contains the
          orthogonal matrix Q, which is the accumulated product of
          the transformations applied to A, E, and B on the left.

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ &gt;= MAX(1,N).

  Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
          The leading N-by-N part of this array contains the
          orthogonal matrix Z, which is the accumulated product of
          the transformations applied to A, E, and C on the right.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ &gt;= MAX(1,N).

  NF      (output) INTEGER
          The order of the reduced matrices Af and Ef; also, the
          number of finite generalized eigenvalues of the pencil
          A-lambda*E.

  ND      (output) INTEGER
          The number of non-dynamic infinite eigenvalues of the
          matrix pair (A,E). Note: N-ND is the rank of the matrix E.

  NIBLCK  (output) INTEGER
          If ND &gt; 0, the number of infinite blocks minus one.
          If ND = 0, then NIBLCK = 0.

  IBLCK   (output) INTEGER array, dimension (N)
          IBLCK(i) contains the dimension of the i-th block in the
          staircase form (3), where i = 1,2,...,NIBLCK.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          A tolerance used in rank decisions to determine the
          effective rank, which is defined as the order of the
          largest leading (or trailing) triangular submatrix in the
          QR factorization with column pivoting whose estimated
          condition number is less than 1/TOL. If the user sets
          TOL &lt;= 0, then an implicitly computed, default tolerance
          TOLDEF = N**2*EPS,  is used instead, where EPS is the
          machine precision (see LAPACK Library routine DLAMCH).
          TOL &lt; 1.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.  LDWORK &gt;= 1, and if N &gt; 0,
          LDWORK &gt;= 4*N.

          If LDWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message related to LDWORK is issued by
          XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the pencil A-lambda*E is not regular;
          = 2:  the QZ iteration did not converge.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  For the separation of infinite structure, the reduction algorithm
  of [1] is employed.
  If JOB = 'F', the matrices Ai and Ei have the form

        ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
   Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ;   (3)
        (  :     :    .    :  )         ( :   :    .    :  )
        (  0     0   ... A1,1 )         ( 0   0   ...   0  )

  if JOB = 'I' the matrices Ai and Ei have the form

        ( A1,1 ... A1,k  A1,0 )         ( 0 ... E1,k  E1,0 )
   Ai = (  :    .    :    :   ) ,  Ei = ( :  .    :    :   ) ,   (4)
        (  :   ... Ak,k  Ak,0 )         ( : ...   0   Ek,0 )
        (  0   ...   0   A0,0 )         ( 0 ...   0     0  )

  where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular
  matrices. A0,0 corresponds to the non-dynamic infinite modes of
  the system.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Misra, P., Van Dooren, P., and Varga, A.
      Computation of structural invariants of generalized
      state-space systems.
      Automatica, 30, pp. 1921-1936, 1994.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable and requires
  0( N**3 )  floating point operations.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The number of infinite poles is computed as

                NIBLCK
     NINFP =     Sum  IBLCK(i) = N - ND - NF.
                 i=1
  The multiplicities of infinite poles can be computed as follows:
  there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity
  k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
  Note that each infinite pole of multiplicity k corresponds to
  an infinite eigenvalue of multiplicity k+1.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TG01MD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDE = NMAX, LDQ = NMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX )
*     .. Local Scalars ..
      CHARACTER*1      JOB
      INTEGER          I, INFO, J, M, N, ND, NF, NIBLCK, P
      DOUBLE PRECISION TOL
*     .. Local Arrays ..
      INTEGER          IBLCK(NMAX),  IWORK(NMAX)
      DOUBLE PRECISION A(LDA,NMAX),  ALPHAI(NMAX), ALPHAR(NMAX),
     $                 B(LDB,MMAX),    BETA(NMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,NMAX),
     $                 Z(LDZ,NMAX)
*     .. External Subroutines ..
      EXTERNAL         TG01MD
*     .. Intrinsic Functions ..
      INTRINSIC        DCMPLX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, JOB, TOL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99987 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99986 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Find the reduced descriptor system
*              (A-lambda E,B,C).
               CALL TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C,
     $                      LDC, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ,
     $                      NF, ND, NIBLCK, IBLCK, TOL, IWORK, DWORK,
     $                      LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99994 ) NF, ND
                  WRITE ( NOUT, FMT = 99989 ) NIBLCK + 1
                  IF ( NIBLCK.GT.0 ) THEN
                     WRITE ( NOUT, FMT = 99985 )
     $                     ( IBLCK(I), I = 1, NIBLCK ) 
                  END IF
                  WRITE ( NOUT, FMT = 99997 )
                  DO 10 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10             CONTINUE
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 30 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 40 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 50 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,N )
   50             CONTINUE
                  WRITE ( NOUT, FMT = 99990 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99985 )
                  DO 70 I = 1, NF
                     WRITE ( NOUT, FMT = 99984 )
     $                  DCMPLX( ALPHAR(I), ALPHAI(I) )/BETA(I)
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01MD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Order of reduced system =', I5/
     $        ' Number of non-dynamic infinite eigenvalues =', I5)
99993 FORMAT (/' The transformed input/state matrix Q''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99989 FORMAT ( ' Number of infinite blocks = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
99985 FORMAT (/' The finite generalized eigenvalues are '/
     $         ' real  part     imag  part ')
99984 FORMAT (1X,F9.4,SP,F9.4,S,'i ')
      END
</PRE>
<B>Program Data</B>
<PRE>
TG01MD EXAMPLE PROGRAM DATA
  4     2     2     F     0.0    
    -1     0     0     3
     0     0     1     2
     1     1     0     4
     0     0     0     0
     1     2     0     0
     0     1     0     1
     3     9     6     3
     0     0     2     0
     1     0
     0     0
     0     1
     1     1
    -1     0     1     0
     0     1    -1     1
</PRE>
<B>Program Results</B>
<PRE>
 TG01MD EXAMPLE PROGRAM RESULTS

 Order of reduced system =    3
 Number of non-dynamic infinite eigenvalues =    1
 Number of infinite blocks =     1

 The transformed state dynamics matrix Q'*A*Z is 
   1.2803  -2.3613  -0.9025  -3.9982
   0.0000  -0.5796   0.8504   0.4350
   0.0000   0.0000   0.0000   1.5770
   0.0000   0.0000   0.0000   2.2913

 The transformed descriptor matrix Q'*E*Z is 
   9.3142  -4.1463   5.4026  -2.3944
   0.0000   0.1594   0.1212  -1.0948
   0.0000   0.0000   2.3524  -0.6008
   0.0000   0.0000   0.0000   0.0000

 The transformed input/state matrix Q'*B is 
  -0.2089  -0.9712
   0.6948  -0.0647
  -0.4336  -0.9538
   1.1339   0.3780

 The transformed state/output matrix C*Z is 
  -0.0469  -0.9391  -0.8847   0.5774
  -1.0697   0.3620   1.1795   0.5774

 The left transformation matrix Q is 
  -0.2089   0.6948   0.3902   0.5669
  -0.1148  -0.7163   0.3902   0.5669
  -0.9712  -0.0647  -0.1301  -0.1890
   0.0000   0.0000  -0.8238   0.5669

 The right transformation matrix Z is 
   0.0469   0.9391  -0.0843  -0.3299
  -0.9962   0.0189  -0.0211  -0.0825
   0.0000  -0.0000  -0.9689   0.2474
  -0.0735   0.3432   0.2317   0.9073

 The finite generalized eigenvalues are 
 real  part     imag  part 
    0.1375  +0.0000i 
   -3.6375  +0.0000i 
    0.0000  +0.0000i 
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>