control_systems_torbox 0.2.1

Control systems toolbox
Documentation
<HTML>
<HEAD><TITLE>TB01YD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TB01YD">TB01YD</A></H2>
<H3>
Special similarity transformation of a state-space system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To apply a special similarity transformation to a system given as
  a triple (A,B,C),

     A &lt;-- P * A * P,  B &lt;-- P * B,  C &lt;-- C * P,

  where P is a matrix with 1 on the secondary diagonal, and with 0
  in the other entries.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TB01YD( N, M, P, A, LDA, B, LDB, C, LDC, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A, the number of rows of matrix B
          and the number of columns of matrix C.
          N represents the dimension of the state vector.  N &gt;= 0.

  M       (input) INTEGER.
          The number of columns of matrix B.
          M represents the dimension of input vector.  M &gt;= 0.

  P       (input) INTEGER.
          The number of rows of matrix C.
          P represents the dimension of output vector.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the system state matrix A.
          On exit, the leading N-by-N part of this array contains
          the transformed matrix P*A*P.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the system input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed matrix P*B.

  LDB     INTEGER
          The leading dimension of the array B.
          LDB &gt;= MAX(1,N) if M &gt; 0.
          LDB &gt;= 1        if M = 0.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the system output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix C*P.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= MAX(1,P).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit.
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The rows and/or columns of the matrices of the triplet (A,B,C)
  are swapped in a special way.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>