<HTML>
<HEAD><TITLE>AB09HD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB09HD">AB09HD</A></H2>
<H3>
Stochastic balancing based model reduction
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a reduced order model (Ar,Br,Cr,Dr) for an original
state-space representation (A,B,C,D) by using the stochastic
balancing approach in conjunction with the square-root or
the balancing-free square-root Balance & Truncate (B&T)
or Singular Perturbation Approximation (SPA) model reduction
methods for the ALPHA-stable part of the system.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, ALPHA,
$ BETA, A, LDA, B, LDB, C, LDC, D, LDD, NS, HSV,
$ TOL1, TOL2, IWORK, DWORK, LDWORK, BWORK, IWARN,
$ INFO )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK,
$ M, N, NR, NS, P
DOUBLE PRECISION ALPHA, BETA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), HSV(*)
LOGICAL BWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the original system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
JOB CHARACTER*1
Specifies the model reduction approach to be used
as follows:
= 'B': use the square-root Balance & Truncate method;
= 'F': use the balancing-free square-root
Balance & Truncate method;
= 'S': use the square-root Singular Perturbation
Approximation method;
= 'P': use the balancing-free square-root
Singular Perturbation Approximation method.
EQUIL CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the triplet (A,B,C) as follows:
= 'S': perform equilibration (scaling);
= 'N': do not perform equilibration.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting order NR is fixed;
= 'A': the resulting order NR is automatically determined
on basis of the given tolerance TOL1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the original state-space representation,
i.e., the order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
P <= M if BETA = 0.
NR (input/output) INTEGER
On entry with ORDSEL = 'F', NR is the desired order of the
resulting reduced order system. 0 <= NR <= N.
On exit, if INFO = 0, NR is the order of the resulting
reduced order model. For a system with NU ALPHA-unstable
eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
NR is set as follows: if ORDSEL = 'F', NR is equal to
NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
on entry, and NMIN is the order of a minimal realization
of the ALPHA-stable part of the given system; NMIN is
determined as the number of Hankel singular values greater
than NS*EPS, where EPS is the machine precision
(see LAPACK Library Routine DLAMCH);
if ORDSEL = 'A', NR is the sum of NU and the number of
Hankel singular values greater than MAX(TOL1,NS*EPS);
NR can be further reduced to ensure that
HSV(NR-NU) > HSV(NR+1-NU).
ALPHA (input) DOUBLE PRECISION
Specifies the ALPHA-stability boundary for the eigenvalues
of the state dynamics matrix A. For a continuous-time
system (DICO = 'C'), ALPHA <= 0 is the boundary value for
the real parts of eigenvalues, while for a discrete-time
system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
BETA (input) DOUBLE PRECISION
BETA > 0 specifies the absolute/relative error weighting
parameter. A large positive value of BETA favours the
minimization of the absolute approximation error, while a
small value of BETA is appropriate for the minimization
of the relative error.
BETA = 0 means a pure relative error method and can be
used only if rank(D) = P.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A.
On exit, if INFO = 0, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the reduced
order system.
The resulting A has a block-diagonal form with two blocks.
For a system with NU ALPHA-unstable eigenvalues and
NS ALPHA-stable eigenvalues (NU+NS = N), the leading
NU-by-NU block contains the unreduced part of A
corresponding to ALPHA-unstable eigenvalues in an
upper real Schur form.
The trailing (NR+NS-N)-by-(NR+NS-N) block contains
the reduced part of A corresponding to ALPHA-stable
eigenvalues.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, if INFO = 0, the leading NR-by-M part of this
array contains the input/state matrix Br of the reduced
order system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = 0, the leading P-by-NR part of this
array contains the state/output matrix Cr of the reduced
order system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the original input/output matrix D.
On exit, if INFO = 0, the leading P-by-M part of this
array contains the input/output matrix Dr of the reduced
order system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
NS (output) INTEGER
The dimension of the ALPHA-stable subsystem.
HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the leading NS elements of HSV contain the
Hankel singular values of the phase system corresponding
to the ALPHA-stable part of the original system.
The Hankel singular values are ordered decreasingly.
</PRE>
<B>Tolerances</B>
<PRE>
TOL1 DOUBLE PRECISION
If ORDSEL = 'A', TOL1 contains the tolerance for
determining the order of reduced system.
For model reduction, the recommended value of TOL1 lies
in the interval [0.00001,0.001].
If TOL1 <= 0 on entry, the used default value is
TOL1 = NS*EPS, where NS is the number of
ALPHA-stable eigenvalues of A and EPS is the machine
precision (see LAPACK Library Routine DLAMCH).
If ORDSEL = 'F', the value of TOL1 is ignored.
TOL1 < 1.
TOL2 DOUBLE PRECISION
The tolerance for determining the order of a minimal
realization of the phase system (see METHOD) corresponding
to the ALPHA-stable part of the given system.
The recommended value is TOL2 = NS*EPS.
This value is used by default if TOL2 <= 0 on entry.
If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
TOL2 < 1.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (MAX(1,2*N))
On exit with INFO = 0, IWORK(1) contains the order of the
minimal realization of the system.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK and DWORK(2) contains RCOND, the reciprocal
condition number of the U11 matrix from the expression
used to compute the solution X = U21*inv(U11) of the
Riccati equation for spectral factorization.
A small value RCOND indicates possible ill-conditioning
of the respective Riccati equation.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 2*N*N + MB*(N+P) + MAX( 2, N*(MAX(N,MB,P)+5),
2*N*P+MAX(P*(MB+2),10*N*(N+1) ) ),
where MB = M if BETA = 0 and MB = M+P if BETA > 0.
For optimum performance LDWORK should be larger.
BWORK LOGICAL array, dimension 2*N
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NR is greater
than NSMIN, the sum of the order of the
ALPHA-unstable part and the order of a minimal
realization of the ALPHA-stable part of the given
system; in this case, the resulting NR is set equal
to NSMIN;
= 2: with ORDSEL = 'F', the selected order NR corresponds
to repeated singular values for the ALPHA-stable
part, which are neither all included nor all
excluded from the reduced model; in this case, the
resulting NR is automatically decreased to exclude
all repeated singular values;
= 3: with ORDSEL = 'F', the selected order NR is less
than the order of the ALPHA-unstable part of the
given system; in this case NR is set equal to the
order of the ALPHA-unstable part.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the computation of the ordered real Schur form of A
failed;
= 2: the reduction of the Hamiltonian matrix to real
Schur form failed;
= 3: the reordering of the real Schur form of the
Hamiltonian matrix failed;
= 4: the Hamiltonian matrix has less than N stable
eigenvalues;
= 5: the coefficient matrix U11 in the linear system
X*U11 = U21 to determine X is singular to working
precision;
= 6: BETA = 0 and D has not a maximal row rank;
= 7: the computation of Hankel singular values failed;
= 8: the separation of the ALPHA-stable/unstable diagonal
blocks failed because of very close eigenvalues;
= 9: the resulting order of reduced stable part is less
than the number of unstable zeros of the stable
part.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let be the following linear system
d[x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)
where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine AB09HD determines for
the given system (1), the matrices of a reduced order system
d[z(t)] = Ar*z(t) + Br*u(t)
yr(t) = Cr*z(t) + Dr*u(t), (2)
such that
INFNORM[inv(conj(W))*(G-Gr)] <=
(1+HSV(NR+NS-N+1)) / (1-HSV(NR+NS-N+1)) + ...
+ (1+HSV(NS)) / (1-HSV(NS)) - 1,
where G and Gr are transfer-function matrices of the systems
(A,B,C,D) and (Ar,Br,Cr,Dr), respectively, W is the right, minimum
phase spectral factor satisfying
G1*conj(G1) = conj(W)* W, (3)
G1 is the NS-order ALPHA-stable part of G, and INFNORM(G) is the
infinity-norm of G. HSV(1), ... , HSV(NS) are the Hankel-singular
values of the stable part of the phase system (Ap,Bp,Cp)
with the transfer-function matrix
P = inv(conj(W))*G1.
If BETA > 0, then the model reduction is performed on [G BETA*I]
instead of G. This is the recommended approach to be used when D
has not a maximal row rank or when a certain balance between
relative and absolute approximation errors is desired. For
increasingly large values of BETA, the obtained reduced system
assymptotically approaches that computed by using the
Balance & Truncate or Singular Perturbation Approximation methods.
Note: conj(G) denotes either G'(-s) for a continuous-time system
or G'(1/z) for a discrete-time system.
inv(G) is the inverse of G.
The following procedure is used to reduce a given G:
1) Decompose additively G as
G = G1 + G2,
such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and
G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.
2) Determine G1r, a reduced order approximation of the
ALPHA-stable part G1 using the balancing stochastic method
in conjunction with either the B&T [1,2] or SPA methods [3].
3) Assemble the reduced model Gr as
Gr = G1r + G2.
Note: The employed stochastic truncation algorithm [2,3] has the
property that right half plane zeros of G1 remain as right half
plane zeros of G1r. Thus, the order can not be chosen smaller than
the sum of the number of unstable poles of G and the number of
unstable zeros of G1.
The reduction of the ALPHA-stable part G1 is done as follows.
If JOB = 'B', the square-root stochastic Balance & Truncate
method of [1] is used.
For an ALPHA-stable continuous-time system (DICO = 'C'),
the resulting reduced model is stochastically balanced.
If JOB = 'F', the balancing-free square-root version of the
stochastic Balance & Truncate method [1] is used to reduce
the ALPHA-stable part G1.
If JOB = 'S', the stochastic balancing method is used to reduce
the ALPHA-stable part G1, in conjunction with the square-root
version of the Singular Perturbation Approximation method [3,4].
If JOB = 'P', the stochastic balancing method is used to reduce
the ALPHA-stable part G1, in conjunction with the balancing-free
square-root version of the Singular Perturbation Approximation
method [3,4].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Varga A. and Fasol K.H.
A new square-root balancing-free stochastic truncation model
reduction algorithm.
Proc. 12th IFAC World Congress, Sydney, 1993.
[2] Safonov M. G. and Chiang R. Y.
Model reduction for robust control: a Schur relative error
method.
Int. J. Adapt. Contr. Sign. Proc., vol. 2, pp. 259-272, 1988.
[3] Green M. and Anderson B. D. O.
Generalized balanced stochastic truncation.
Proc. 29-th CDC, Honolulu, Hawaii, pp. 476-481, 1990.
[4] Varga A.
Balancing-free square-root algorithm for computing
singular perturbation approximations.
Proc. 30-th IEEE CDC, Brighton, Dec. 11-13, 1991,
Vol. 2, pp. 1062-1065.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented methods rely on accuracy enhancing square-root or
balancing-free square-root techniques. The effectiveness of the
accuracy enhancing technique depends on the accuracy of the
solution of a Riccati equation. An ill-conditioned Riccati
solution typically results when [D BETA*I] is nearly
rank deficient.
3
The algorithm requires about 100N floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB09HD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDD
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX )
INTEGER LBWORK, LIWORK
PARAMETER ( LBWORK = 2*NMAX, LIWORK = 2*NMAX )
INTEGER LDWORK, MBMAX
PARAMETER ( MBMAX = MMAX + PMAX )
PARAMETER ( LDWORK = 2*NMAX*NMAX + MBMAX*(NMAX+PMAX) +
$ MAX( NMAX*(MAX( NMAX, MMAX, PMAX) + 5),
$ 2*NMAX*PMAX + MAX( PMAX*(MBMAX+2),
$ 10*NMAX*(NMAX+1) ) ) )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, BETA, TOL1, TOL2
INTEGER I, INFO, IWARN, J, M, N, NR, NS, P
CHARACTER*1 DICO, EQUIL, JOB, ORDSEL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK), HSV(NMAX)
LOGICAL BWORK(LBWORK)
INTEGER IWORK(LIWORK)
* .. External Subroutines ..
EXTERNAL AB09HD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, NR, ALPHA, BETA, TOL1, TOL2,
$ DICO, JOB, EQUIL, ORDSEL
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
* Find a reduced ssr for (A,B,C,D).
CALL AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR,
$ ALPHA, BETA, A, LDA, B, LDB, C, LDC, D, LDD,
$ NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
$ BWORK, IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) NR
WRITE ( NOUT, FMT = 99987 )
WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,NS )
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NR
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
20 CONTINUE
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NR
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
40 CONTINUE
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
60 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 70 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
70 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB09HD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09HD = ',I2)
99997 FORMAT (' The order of reduced model = ',I2)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99991 FORMAT (/' The reduced input/output matrix Dr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The stochastic Hankel singular values of ALPHA-stable'
$ ,' part are')
END
</PRE>
<B>Program Data</B>
<PRE>
AB09HD EXAMPLE PROGRAM DATA (Continuous system)
7 2 3 0 0.0 1.0 0.1E0 0.0 C F N A
-0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000
-5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000
0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000
0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200
0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300
0.0000 0.0000
12.500 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 12.500
0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
</PRE>
<B>Program Results</B>
<PRE>
AB09HD EXAMPLE PROGRAM RESULTS
The order of reduced model = 5
The stochastic Hankel singular values of ALPHA-stable part are
0.8803 0.8506 0.8038 0.4494 0.3973 0.0214 0.0209
The reduced state dynamics matrix Ar is
1.2729 0.0000 6.5947 0.0000 -3.4229
0.0000 0.8169 0.0000 2.4821 0.0000
-2.9889 0.0000 -2.9028 0.0000 -0.3692
0.0000 -3.3921 0.0000 -3.1126 0.0000
-1.4767 0.0000 -2.0339 0.0000 -0.6107
The reduced input/state matrix Br is
0.1331 -0.1331
-0.0862 -0.0862
-2.6777 2.6777
-3.5767 -3.5767
-2.3033 2.3033
The reduced state/output matrix Cr is
-0.6907 -0.6882 0.0779 0.0958 -0.0038
0.0676 0.0000 0.6532 0.0000 -0.7522
0.6907 -0.6882 -0.0779 0.0958 0.0038
The reduced input/output matrix Dr is
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>