control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
<HTML>
<HEAD><TITLE>AB09HD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB09HD">AB09HD</A></H2>
<H3>
Stochastic balancing based model reduction
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute a reduced order model (Ar,Br,Cr,Dr) for an original
  state-space representation (A,B,C,D) by using the stochastic
  balancing approach in conjunction with the square-root or
  the balancing-free square-root Balance & Truncate (B&T)
  or Singular Perturbation Approximation (SPA) model reduction
  methods for the ALPHA-stable part of the system.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, ALPHA,
     $                   BETA, A, LDA, B, LDB, C, LDC, D, LDD, NS, HSV,
     $                   TOL1, TOL2, IWORK, DWORK, LDWORK, BWORK, IWARN,
     $                   INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, JOB, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK,
     $                  M, N, NR, NS, P
      DOUBLE PRECISION  ALPHA, BETA, TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), HSV(*)
      LOGICAL           BWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the type of the original system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

  JOB     CHARACTER*1
          Specifies the model reduction approach to be used
          as follows:
          = 'B':  use the square-root Balance & Truncate method;
          = 'F':  use the balancing-free square-root
                  Balance & Truncate method;
          = 'S':  use the square-root Singular Perturbation
                  Approximation method;
          = 'P':  use the balancing-free square-root
                  Singular Perturbation Approximation method.

  EQUIL   CHARACTER*1
          Specifies whether the user wishes to preliminarily
          equilibrate the triplet (A,B,C) as follows:
          = 'S':  perform equilibration (scaling);
          = 'N':  do not perform equilibration.

  ORDSEL  CHARACTER*1
          Specifies the order selection method as follows:
          = 'F':  the resulting order NR is fixed;
          = 'A':  the resulting order NR is automatically determined
                  on basis of the given tolerance TOL1.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the original state-space representation,
          i.e., the order of the matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.
          P &lt;= M if BETA = 0.

  NR      (input/output) INTEGER
          On entry with ORDSEL = 'F', NR is the desired order of the
          resulting reduced order system.  0 &lt;= NR &lt;= N.
          On exit, if INFO = 0, NR is the order of the resulting
          reduced order model. For a system with NU ALPHA-unstable
          eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
          NR is set as follows: if ORDSEL = 'F', NR is equal to
          NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
          on entry, and NMIN is the order of a minimal realization
          of the ALPHA-stable part of the given system; NMIN is
          determined as the number of Hankel singular values greater
          than NS*EPS, where EPS is the machine precision
          (see LAPACK Library Routine DLAMCH);
          if ORDSEL = 'A', NR is the sum of NU and the number of
          Hankel singular values greater than MAX(TOL1,NS*EPS);
          NR can be further reduced to ensure that
          HSV(NR-NU) &gt; HSV(NR+1-NU).

  ALPHA   (input) DOUBLE PRECISION
          Specifies the ALPHA-stability boundary for the eigenvalues
          of the state dynamics matrix A. For a continuous-time
          system (DICO = 'C'), ALPHA &lt;= 0 is the boundary value for
          the real parts of eigenvalues, while for a discrete-time
          system (DICO = 'D'), 0 &lt;= ALPHA &lt;= 1 represents the
          boundary value for the moduli of eigenvalues.
          The ALPHA-stability domain does not include the boundary.

  BETA    (input) DOUBLE PRECISION
          BETA &gt; 0 specifies the absolute/relative error weighting
          parameter. A large positive value of BETA favours the
          minimization of the absolute approximation error, while a
          small value of BETA is appropriate for the minimization
          of the relative error.
          BETA = 0 means a pure relative error method and can be
          used only if rank(D) = P.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state dynamics matrix A.
          On exit, if INFO = 0, the leading NR-by-NR part of this
          array contains the state dynamics matrix Ar of the reduced
          order system.
          The resulting A has a block-diagonal form with two blocks.
          For a system with NU ALPHA-unstable eigenvalues and
          NS ALPHA-stable eigenvalues (NU+NS = N), the leading
          NU-by-NU block contains the unreduced part of A
          corresponding to ALPHA-unstable eigenvalues in an
          upper real Schur form.
          The trailing (NR+NS-N)-by-(NR+NS-N) block contains
          the reduced part of A corresponding to ALPHA-stable
          eigenvalues.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the original input/state matrix B.
          On exit, if INFO = 0, the leading NR-by-M part of this
          array contains the input/state matrix Br of the reduced
          order system.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the original state/output matrix C.
          On exit, if INFO = 0, the leading P-by-NR part of this
          array contains the state/output matrix Cr of the reduced
          order system.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading P-by-M part of this array must
          contain the original input/output matrix D.
          On exit, if INFO = 0, the leading P-by-M part of this
          array contains the input/output matrix Dr of the reduced
          order system.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,P).

  NS      (output) INTEGER
          The dimension of the ALPHA-stable subsystem.

  HSV     (output) DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the leading NS elements of HSV contain the
          Hankel singular values of the phase system corresponding
          to the ALPHA-stable part of the original system.
          The Hankel singular values are ordered decreasingly.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL1    DOUBLE PRECISION
          If ORDSEL = 'A', TOL1 contains the tolerance for
          determining the order of reduced system.
          For model reduction, the recommended value of TOL1 lies
          in the interval [0.00001,0.001].
          If TOL1 &lt;= 0 on entry, the used default value is
          TOL1 = NS*EPS, where NS is the number of
          ALPHA-stable eigenvalues of A and EPS is the machine
          precision (see LAPACK Library Routine DLAMCH).
          If ORDSEL = 'F', the value of TOL1 is ignored.
          TOL1 &lt; 1.

  TOL2    DOUBLE PRECISION
          The tolerance for determining the order of a minimal
          realization of the phase system (see METHOD) corresponding
          to the ALPHA-stable part of the given system.
          The recommended value is TOL2 = NS*EPS.
          This value is used by default if TOL2 &lt;= 0 on entry.
          If TOL2 &gt; 0 and ORDSEL = 'A', then TOL2 &lt;= TOL1.
          TOL2 &lt; 1.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (MAX(1,2*N))
          On exit with INFO = 0, IWORK(1) contains the order of the
          minimal realization of the system.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK and DWORK(2) contains RCOND, the reciprocal
          condition number of the U11 matrix from the expression
          used to compute the solution X = U21*inv(U11) of the
          Riccati equation for spectral factorization.
          A small value RCOND indicates possible ill-conditioning
          of the respective Riccati equation.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= 2*N*N + MB*(N+P) + MAX( 2, N*(MAX(N,MB,P)+5),
                                 2*N*P+MAX(P*(MB+2),10*N*(N+1) ) ),
          where MB = M if BETA = 0 and MB = M+P if BETA &gt; 0.
          For optimum performance LDWORK should be larger.

  BWORK   LOGICAL array, dimension 2*N

</PRE>
<B>Warning Indicator</B>
<PRE>
  IWARN   INTEGER
          = 0:  no warning;
          = 1:  with ORDSEL = 'F', the selected order NR is greater
                than NSMIN, the sum of the order of the
                ALPHA-unstable part and the order of a minimal
                realization of the ALPHA-stable part of the given
                system; in this case, the resulting NR is set equal
                to NSMIN;
          = 2:  with ORDSEL = 'F', the selected order NR corresponds
                to repeated singular values for the ALPHA-stable
                part, which are neither all included nor all
                excluded from the reduced model; in this case, the
                resulting NR is automatically decreased to exclude
                all repeated singular values;
          = 3:  with ORDSEL = 'F', the selected order NR is less
                than the order of the ALPHA-unstable part of the
                given system; in this case NR is set equal to the
                order of the ALPHA-unstable part.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the computation of the ordered real Schur form of A
                failed;
          = 2:  the reduction of the Hamiltonian matrix to real
                Schur form failed;
          = 3:  the reordering of the real Schur form of the
                Hamiltonian matrix failed;
          = 4:  the Hamiltonian matrix has less than N stable
                eigenvalues;
          = 5:  the coefficient matrix U11 in the linear system
                X*U11 = U21 to determine X is singular to working
                precision;
          = 6:  BETA = 0 and D has not a maximal row rank;
          = 7:  the computation of Hankel singular values failed;
          = 8:  the separation of the ALPHA-stable/unstable diagonal
                blocks failed because of very close eigenvalues;
          = 9:  the resulting order of reduced stable part is less
                than the number of unstable zeros of the stable
                part.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Let be the following linear system

       d[x(t)] = Ax(t) + Bu(t)
       y(t)    = Cx(t) + Du(t),                      (1)

  where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
  for a discrete-time system. The subroutine AB09HD determines for
  the given system (1), the matrices of a reduced order system

       d[z(t)] = Ar*z(t) + Br*u(t)
       yr(t)   = Cr*z(t) + Dr*u(t),                  (2)

  such that

       INFNORM[inv(conj(W))*(G-Gr)] &lt;=
                    (1+HSV(NR+NS-N+1)) / (1-HSV(NR+NS-N+1)) + ...
                    + (1+HSV(NS)) / (1-HSV(NS)) - 1,

  where G and Gr are transfer-function matrices of the systems
  (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, W is the right, minimum
  phase spectral factor satisfying

      G1*conj(G1) = conj(W)* W,                      (3)

  G1 is the NS-order ALPHA-stable part of G, and INFNORM(G) is the
  infinity-norm of G. HSV(1), ... , HSV(NS) are the Hankel-singular
  values of the stable part of the phase system (Ap,Bp,Cp)
  with the transfer-function matrix

       P = inv(conj(W))*G1.

  If BETA &gt; 0, then the model reduction is performed on [G BETA*I]
  instead of G. This is the recommended approach to be used when D
  has not a maximal row rank or when a certain balance between
  relative and absolute approximation errors is desired. For
  increasingly large values of BETA, the obtained reduced system
  assymptotically approaches that computed by using the
  Balance & Truncate or Singular Perturbation Approximation methods.

  Note: conj(G)  denotes either G'(-s) for a continuous-time system
        or G'(1/z) for a discrete-time system.
        inv(G) is the inverse of G.

  The following procedure is used to reduce a given G:

  1) Decompose additively G as

       G = G1 + G2,

     such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and
     G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.

  2) Determine G1r, a reduced order approximation of the
     ALPHA-stable part G1 using the balancing stochastic method
     in conjunction with either the B&T [1,2] or SPA methods [3].

  3) Assemble the reduced model Gr as

        Gr = G1r + G2.

  Note: The employed stochastic truncation algorithm [2,3] has the
  property that right half plane zeros of G1 remain as right half
  plane zeros of G1r. Thus, the order can not be chosen smaller than
  the sum of the number of unstable poles of G and the number of
  unstable zeros of G1.

  The reduction of the ALPHA-stable part G1 is done as follows.

  If JOB = 'B', the square-root stochastic Balance & Truncate
  method of [1] is used.
  For an ALPHA-stable continuous-time system (DICO = 'C'),
  the resulting reduced model is stochastically balanced.

  If JOB = 'F', the balancing-free square-root version of the
  stochastic Balance & Truncate method [1] is used to reduce
  the ALPHA-stable part G1.

  If JOB = 'S', the stochastic balancing method is used to reduce
  the ALPHA-stable part G1, in conjunction with the square-root
  version of the Singular Perturbation Approximation method [3,4].

  If JOB = 'P', the stochastic balancing method is used to reduce
  the ALPHA-stable part G1, in conjunction with the balancing-free
  square-root version of the Singular Perturbation Approximation
  method [3,4].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Varga A. and Fasol K.H.
      A new square-root balancing-free stochastic truncation model
      reduction algorithm.
      Proc. 12th IFAC World Congress, Sydney, 1993.

  [2] Safonov M. G. and Chiang R. Y.
      Model reduction for robust control: a Schur relative error
      method.
      Int. J. Adapt. Contr. Sign. Proc., vol. 2, pp. 259-272, 1988.

  [3] Green M. and Anderson B. D. O.
      Generalized balanced stochastic truncation.
      Proc. 29-th CDC, Honolulu, Hawaii, pp. 476-481, 1990.

  [4] Varga A.
      Balancing-free square-root algorithm for computing
      singular perturbation approximations.
      Proc. 30-th IEEE CDC,  Brighton, Dec. 11-13, 1991,
      Vol. 2, pp. 1062-1065.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The implemented methods rely on accuracy enhancing square-root or
  balancing-free square-root techniques. The effectiveness of the
  accuracy enhancing technique depends on the accuracy of the
  solution of a Riccati equation. An ill-conditioned Riccati
  solution typically results when [D BETA*I] is nearly
  rank deficient.
                                   3
  The algorithm requires about 100N  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB09HD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDD
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                 LDD = PMAX )
      INTEGER          LBWORK, LIWORK
      PARAMETER        ( LBWORK = 2*NMAX, LIWORK = 2*NMAX )
      INTEGER          LDWORK, MBMAX
      PARAMETER        ( MBMAX = MMAX + PMAX )
      PARAMETER        ( LDWORK = 2*NMAX*NMAX + MBMAX*(NMAX+PMAX) +
     $                      MAX( NMAX*(MAX( NMAX, MMAX, PMAX) + 5),
     $                     2*NMAX*PMAX + MAX( PMAX*(MBMAX+2),
     $                                        10*NMAX*(NMAX+1) ) ) )
*     .. Local Scalars ..
      DOUBLE PRECISION ALPHA, BETA, TOL1, TOL2
      INTEGER          I, INFO, IWARN, J, M, N, NR, NS, P
      CHARACTER*1      DICO, EQUIL, JOB, ORDSEL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK), HSV(NMAX)
      LOGICAL          BWORK(LBWORK)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         AB09HD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NR, ALPHA, BETA, TOL1, TOL2,
     $                      DICO, JOB, EQUIL, ORDSEL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
*              Find a reduced ssr for (A,B,C,D).
               CALL AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR,
     $                      ALPHA, BETA, A, LDA, B, LDB, C, LDC, D, LDD,
     $                      NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
     $                      BWORK, IWARN, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 ) NR
                  WRITE ( NOUT, FMT = 99987 )
                  WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,NS )
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
   20             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   40             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 70 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB09HD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09HD = ',I2)
99997 FORMAT (' The order of reduced model = ',I2)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99991 FORMAT (/' The reduced input/output matrix Dr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The stochastic Hankel singular values of ALPHA-stable'
     $        ,' part are')
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB09HD EXAMPLE PROGRAM DATA (Continuous system)
  7  2   3   0   0.0   1.0  0.1E0  0.0    C     F     N     A
 -0.04165  0.0000  4.9200  -4.9200  0.0000  0.0000  0.0000
 -5.2100  -12.500  0.0000   0.0000  0.0000  0.0000  0.0000
  0.0000   3.3300 -3.3300   0.0000  0.0000  0.0000  0.0000
  0.5450   0.0000  0.0000   0.0000 -0.5450  0.0000  0.0000
  0.0000   0.0000  0.0000   4.9200 -0.04165 0.0000  4.9200
  0.0000   0.0000  0.0000   0.0000 -5.2100 -12.500  0.0000
  0.0000   0.0000  0.0000   0.0000  0.0000  3.3300 -3.3300
  0.0000   0.0000
  12.500   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   12.500
  0.0000   0.0000
  1.0000   0.0000  0.0000   0.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   1.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   0.0000  1.0000  0.0000  0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   0.0000

</PRE>
<B>Program Results</B>
<PRE>
 AB09HD EXAMPLE PROGRAM RESULTS

 The order of reduced model =  5

 The stochastic Hankel singular values of ALPHA-stable part are
   0.8803   0.8506   0.8038   0.4494   0.3973   0.0214   0.0209

 The reduced state dynamics matrix Ar is 
   1.2729   0.0000   6.5947   0.0000  -3.4229
   0.0000   0.8169   0.0000   2.4821   0.0000
  -2.9889   0.0000  -2.9028   0.0000  -0.3692
   0.0000  -3.3921   0.0000  -3.1126   0.0000
  -1.4767   0.0000  -2.0339   0.0000  -0.6107

 The reduced input/state matrix Br is 
   0.1331  -0.1331
  -0.0862  -0.0862
  -2.6777   2.6777
  -3.5767  -3.5767
  -2.3033   2.3033

 The reduced state/output matrix Cr is 
  -0.6907  -0.6882   0.0779   0.0958  -0.0038
   0.0676   0.0000   0.6532   0.0000  -0.7522
   0.6907  -0.6882  -0.0779   0.0958   0.0038

 The reduced input/output matrix Dr is 
   0.0000   0.0000
   0.0000   0.0000
   0.0000   0.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>