stm32-metapac 18.0.0

Peripheral Access Crate (PAC) for all STM32 chips, including metadata.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#![allow(clippy::missing_safety_doc)]
#![allow(clippy::identity_op)]
#![allow(clippy::unnecessary_cast)]
#![allow(clippy::erasing_op)]

#[doc = "Analog-to-Digital Converter."]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct AdcCommon {
    ptr: *mut u8,
}
unsafe impl Send for AdcCommon {}
unsafe impl Sync for AdcCommon {}
impl AdcCommon {
    #[inline(always)]
    pub const unsafe fn from_ptr(ptr: *mut ()) -> Self {
        Self { ptr: ptr as _ }
    }
    #[inline(always)]
    pub const fn as_ptr(&self) -> *mut () {
        self.ptr as _
    }
    #[doc = "ADC common status register."]
    #[inline(always)]
    pub const fn csr(self) -> crate::common::Reg<regs::Csr, crate::common::R> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0usize) as _) }
    }
    #[doc = "ADC_CCR system control register."]
    #[inline(always)]
    pub const fn ccr(self) -> crate::common::Reg<regs::Ccr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x08usize) as _) }
    }
    #[doc = "ADC common regular data register for dual mode."]
    #[inline(always)]
    pub const fn cdr(self) -> crate::common::Reg<regs::Cdr, crate::common::R> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0cusize) as _) }
    }
    #[doc = "ADC common regular data register for 32-bit dual mode."]
    #[inline(always)]
    pub const fn cdr2(self) -> crate::common::Reg<regs::Cdr2, crate::common::R> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x10usize) as _) }
    }
}
pub mod regs {
    #[doc = "ADC_CCR system control register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Ccr(pub u32);
    impl Ccr {
        #[doc = "Dual ADC mode selection These bits are written by software to select the operating mode. All the ADCs are independent: The configurations 00001 to 01001 correspond to the following operating modes: Dual mode, master and slave ADCs working together: All other combinations are reserved and must not be programmed Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn dual(&self) -> super::vals::Dual {
            let val = (self.0 >> 0usize) & 0x1f;
            super::vals::Dual::from_bits(val as u8)
        }
        #[doc = "Dual ADC mode selection These bits are written by software to select the operating mode. All the ADCs are independent: The configurations 00001 to 01001 correspond to the following operating modes: Dual mode, master and slave ADCs working together: All other combinations are reserved and must not be programmed Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_dual(&mut self, val: super::vals::Dual) {
            self.0 = (self.0 & !(0x1f << 0usize)) | (((val.to_bits() as u32) & 0x1f) << 0usize);
        }
        #[doc = "Delay between the end of the master ADC sampling phase and the beginning of the slave ADC sampling phase. These bits are set and cleared by software. These bits are used in dual interleaved modes. Refer to for the value of ADC resolution versus DELAY bits values. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn delay(&self) -> u8 {
            let val = (self.0 >> 8usize) & 0x0f;
            val as u8
        }
        #[doc = "Delay between the end of the master ADC sampling phase and the beginning of the slave ADC sampling phase. These bits are set and cleared by software. These bits are used in dual interleaved modes. Refer to for the value of ADC resolution versus DELAY bits values. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_delay(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 8usize)) | (((val as u32) & 0x0f) << 8usize);
        }
        #[doc = "Dual ADC Mode Data Format This bit-field is set and cleared by software. It specifies the data format in the common data register CDR. Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub const fn damdf(&self) -> super::vals::Damdf {
            let val = (self.0 >> 14usize) & 0x03;
            super::vals::Damdf::from_bits(val as u8)
        }
        #[doc = "Dual ADC Mode Data Format This bit-field is set and cleared by software. It specifies the data format in the common data register CDR. Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub fn set_damdf(&mut self, val: super::vals::Damdf) {
            self.0 = (self.0 & !(0x03 << 14usize)) | (((val.to_bits() as u32) & 0x03) << 14usize);
        }
        #[doc = "ADC prescaler These bits are set and cleared by software to select the frequency of the ADC clock. The clock is common to all ADCs. Others: Reserved, must not be used Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn presc(&self) -> super::vals::Presc {
            let val = (self.0 >> 18usize) & 0x0f;
            super::vals::Presc::from_bits(val as u8)
        }
        #[doc = "ADC prescaler These bits are set and cleared by software to select the frequency of the ADC clock. The clock is common to all ADCs. Others: Reserved, must not be used Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_presc(&mut self, val: super::vals::Presc) {
            self.0 = (self.0 & !(0x0f << 18usize)) | (((val.to_bits() as u32) & 0x0f) << 18usize);
        }
        #[doc = "VREFINT enable This bit is set and cleared by software to enable/disable the VREFINT buffer. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn vrefen(&self) -> bool {
            let val = (self.0 >> 22usize) & 0x01;
            val != 0
        }
        #[doc = "VREFINT enable This bit is set and cleared by software to enable/disable the VREFINT buffer. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_vrefen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val as u32) & 0x01) << 22usize);
        }
        #[doc = "Temperature sensor voltage selection This bit is set and cleared by software to control the temperature sensor channel. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn vsenseen(&self) -> bool {
            let val = (self.0 >> 23usize) & 0x01;
            val != 0
        }
        #[doc = "Temperature sensor voltage selection This bit is set and cleared by software to control the temperature sensor channel. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_vsenseen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 23usize)) | (((val as u32) & 0x01) << 23usize);
        }
        #[doc = "VBAT enable This bit is set and cleared by software to control the VBAT channel. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn vbaten(&self) -> bool {
            let val = (self.0 >> 24usize) & 0x01;
            val != 0
        }
        #[doc = "VBAT enable This bit is set and cleared by software to control the VBAT channel. Note: The software is allowed to write this bit only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_vbaten(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 24usize)) | (((val as u32) & 0x01) << 24usize);
        }
    }
    impl Default for Ccr {
        #[inline(always)]
        fn default() -> Ccr {
            Ccr(0)
        }
    }
    impl core::fmt::Debug for Ccr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Ccr")
                .field("dual", &self.dual())
                .field("delay", &self.delay())
                .field("damdf", &self.damdf())
                .field("presc", &self.presc())
                .field("vrefen", &self.vrefen())
                .field("vsenseen", &self.vsenseen())
                .field("vbaten", &self.vbaten())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Ccr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Ccr {{ dual: {:?}, delay: {=u8:?}, damdf: {:?}, presc: {:?}, vrefen: {=bool:?}, vsenseen: {=bool:?}, vbaten: {=bool:?} }}" , self . dual () , self . delay () , self . damdf () , self . presc () , self . vrefen () , self . vsenseen () , self . vbaten ())
        }
    }
    #[doc = "ADC common regular data register for dual mode."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cdr(pub u32);
    impl Cdr {
        #[doc = "Regular data of the master ADC. In dual mode, these bits contain the regular data of the master ADC. Refer to . The data alignment is applied as described in offset (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT)) In DAMDF\\[1:0\\]
= 11 mode, bits 15:8 contains SLV_ADC_DR\\[7:0\\], bits 7:0 contains MST_ADC_DR\\[7:0\\]."]
        #[inline(always)]
        pub const fn rdata_mst(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0xffff;
            val as u16
        }
        #[doc = "Regular data of the master ADC. In dual mode, these bits contain the regular data of the master ADC. Refer to . The data alignment is applied as described in offset (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT)) In DAMDF\\[1:0\\]
= 11 mode, bits 15:8 contains SLV_ADC_DR\\[7:0\\], bits 7:0 contains MST_ADC_DR\\[7:0\\]."]
        #[inline(always)]
        pub fn set_rdata_mst(&mut self, val: u16) {
            self.0 = (self.0 & !(0xffff << 0usize)) | (((val as u32) & 0xffff) << 0usize);
        }
        #[doc = "Regular data of the slave ADC In dual mode, these bits contain the regular data of the slave ADC. Refer to Dual ADC modes. The data alignment is applied as described in offset (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT))."]
        #[inline(always)]
        pub const fn rdata_slv(&self) -> u16 {
            let val = (self.0 >> 16usize) & 0xffff;
            val as u16
        }
        #[doc = "Regular data of the slave ADC In dual mode, these bits contain the regular data of the slave ADC. Refer to Dual ADC modes. The data alignment is applied as described in offset (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT))."]
        #[inline(always)]
        pub fn set_rdata_slv(&mut self, val: u16) {
            self.0 = (self.0 & !(0xffff << 16usize)) | (((val as u32) & 0xffff) << 16usize);
        }
    }
    impl Default for Cdr {
        #[inline(always)]
        fn default() -> Cdr {
            Cdr(0)
        }
    }
    impl core::fmt::Debug for Cdr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cdr")
                .field("rdata_mst", &self.rdata_mst())
                .field("rdata_slv", &self.rdata_slv())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cdr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Cdr {{ rdata_mst: {=u16:?}, rdata_slv: {=u16:?} }}",
                self.rdata_mst(),
                self.rdata_slv()
            )
        }
    }
    #[doc = "ADC common regular data register for 32-bit dual mode."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cdr2(pub u32);
    impl Cdr2 {
        #[doc = "Regular data of the master/slave alternated ADCs In dual mode, these bits alternatively contains the regular 32-bit data of the master and the slave ADC. Refer to . The data alignment is applied as described in (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT)."]
        #[inline(always)]
        pub const fn rdata_alt(&self) -> u32 {
            let val = (self.0 >> 0usize) & 0xffff_ffff;
            val as u32
        }
        #[doc = "Regular data of the master/slave alternated ADCs In dual mode, these bits alternatively contains the regular 32-bit data of the master and the slave ADC. Refer to . The data alignment is applied as described in (ADC_DR, ADC_JDRy, OFFSETy, OFFSETy_CH, OVSS, LSHIFT, USAT, SSAT)."]
        #[inline(always)]
        pub fn set_rdata_alt(&mut self, val: u32) {
            self.0 = (self.0 & !(0xffff_ffff << 0usize)) | (((val as u32) & 0xffff_ffff) << 0usize);
        }
    }
    impl Default for Cdr2 {
        #[inline(always)]
        fn default() -> Cdr2 {
            Cdr2(0)
        }
    }
    impl core::fmt::Debug for Cdr2 {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cdr2").field("rdata_alt", &self.rdata_alt()).finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cdr2 {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Cdr2 {{ rdata_alt: {=u32:?} }}", self.rdata_alt())
        }
    }
    #[doc = "ADC common status register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Csr(pub u32);
    impl Csr {
        #[doc = "Master ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn adrdy_mst(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "Master ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_adrdy_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "End of Sampling phase flag of the master ADC This bit is a copy of the EOSMP bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eosmp_mst(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "End of Sampling phase flag of the master ADC This bit is a copy of the EOSMP bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eosmp_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
        #[doc = "End of regular conversion of the master ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eoc_mst(&self) -> bool {
            let val = (self.0 >> 2usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular conversion of the master ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eoc_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 2usize)) | (((val as u32) & 0x01) << 2usize);
        }
        #[doc = "End of regular sequence flag of the master ADC This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eos_mst(&self) -> bool {
            let val = (self.0 >> 3usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular sequence flag of the master ADC This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eos_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 3usize)) | (((val as u32) & 0x01) << 3usize);
        }
        #[doc = "Overrun flag of the master ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn ovr_mst(&self) -> bool {
            let val = (self.0 >> 4usize) & 0x01;
            val != 0
        }
        #[doc = "Overrun flag of the master ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_ovr_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val as u32) & 0x01) << 4usize);
        }
        #[doc = "End of injected conversion flag of the master ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeoc_mst(&self) -> bool {
            let val = (self.0 >> 5usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected conversion flag of the master ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeoc_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 5usize)) | (((val as u32) & 0x01) << 5usize);
        }
        #[doc = "End of injected sequence flag of the master ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeos_mst(&self) -> bool {
            let val = (self.0 >> 6usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected sequence flag of the master ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeos_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 6usize)) | (((val as u32) & 0x01) << 6usize);
        }
        #[doc = "Analog watchdog flags of the master ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn awd_mst(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog flags of the master ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_awd_mst(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "ADC voltage regulator ready flag of the master ADC This bit is a copy of the LDORDY bit of the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn ldordy_mst(&self) -> bool {
            let val = (self.0 >> 12usize) & 0x01;
            val != 0
        }
        #[doc = "ADC voltage regulator ready flag of the master ADC This bit is a copy of the LDORDY bit of the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_ldordy_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 12usize)) | (((val as u32) & 0x01) << 12usize);
        }
        #[doc = "Slave ADC ready This bit is a copy of the ADRDY bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn adrdy_slv(&self) -> bool {
            let val = (self.0 >> 16usize) & 0x01;
            val != 0
        }
        #[doc = "Slave ADC ready This bit is a copy of the ADRDY bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_adrdy_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 16usize)) | (((val as u32) & 0x01) << 16usize);
        }
        #[doc = "End of Sampling phase flag of the slave ADC This bit is a copy of the EOSMP2 bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn eosmp_slv(&self) -> bool {
            let val = (self.0 >> 17usize) & 0x01;
            val != 0
        }
        #[doc = "End of Sampling phase flag of the slave ADC This bit is a copy of the EOSMP2 bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_eosmp_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 17usize)) | (((val as u32) & 0x01) << 17usize);
        }
        #[doc = "End of regular conversion of the slave ADC This bit is a copy of the EOC bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn eoc_slv(&self) -> bool {
            let val = (self.0 >> 18usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular conversion of the slave ADC This bit is a copy of the EOC bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_eoc_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 18usize)) | (((val as u32) & 0x01) << 18usize);
        }
        #[doc = "End of regular sequence flag of the slave ADC This bit is a copy of the EOS bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn eos_slv(&self) -> bool {
            let val = (self.0 >> 19usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular sequence flag of the slave ADC This bit is a copy of the EOS bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_eos_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 19usize)) | (((val as u32) & 0x01) << 19usize);
        }
        #[doc = "Overrun flag of the slave ADC This bit is a copy of the OVR bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn ovr_slv(&self) -> bool {
            let val = (self.0 >> 20usize) & 0x01;
            val != 0
        }
        #[doc = "Overrun flag of the slave ADC This bit is a copy of the OVR bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_ovr_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 20usize)) | (((val as u32) & 0x01) << 20usize);
        }
        #[doc = "End of injected conversion flag of the slave ADC This bit is a copy of the JEOC bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn jeoc_slv(&self) -> bool {
            let val = (self.0 >> 21usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected conversion flag of the slave ADC This bit is a copy of the JEOC bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_jeoc_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 21usize)) | (((val as u32) & 0x01) << 21usize);
        }
        #[doc = "End of injected sequence flag of the slave ADC This bit is a copy of the JEOS bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn jeos_slv(&self) -> bool {
            let val = (self.0 >> 22usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected sequence flag of the slave ADC This bit is a copy of the JEOS bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_jeos_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val as u32) & 0x01) << 22usize);
        }
        #[doc = "Analog watchdog 1 flag of the slave ADC This bit is a copy of the AWD1 bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn awd1_slv(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 23usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog 1 flag of the slave ADC This bit is a copy of the AWD1 bit in the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_awd1_slv(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 23usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "ADC voltage regulator ready flag of the slave ADC This bit is a copy of the LDORDY bit of the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub const fn ldordy_slv(&self) -> bool {
            let val = (self.0 >> 28usize) & 0x01;
            val != 0
        }
        #[doc = "ADC voltage regulator ready flag of the slave ADC This bit is a copy of the LDORDY bit of the corresponding ADCx+1_ISR register."]
        #[inline(always)]
        pub fn set_ldordy_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 28usize)) | (((val as u32) & 0x01) << 28usize);
        }
    }
    impl Default for Csr {
        #[inline(always)]
        fn default() -> Csr {
            Csr(0)
        }
    }
    impl core::fmt::Debug for Csr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Csr")
                .field("adrdy_mst", &self.adrdy_mst())
                .field("eosmp_mst", &self.eosmp_mst())
                .field("eoc_mst", &self.eoc_mst())
                .field("eos_mst", &self.eos_mst())
                .field("ovr_mst", &self.ovr_mst())
                .field("jeoc_mst", &self.jeoc_mst())
                .field("jeos_mst", &self.jeos_mst())
                .field("awd_mst[0]", &self.awd_mst(0usize))
                .field("awd_mst[1]", &self.awd_mst(1usize))
                .field("awd_mst[2]", &self.awd_mst(2usize))
                .field("ldordy_mst", &self.ldordy_mst())
                .field("adrdy_slv", &self.adrdy_slv())
                .field("eosmp_slv", &self.eosmp_slv())
                .field("eoc_slv", &self.eoc_slv())
                .field("eos_slv", &self.eos_slv())
                .field("ovr_slv", &self.ovr_slv())
                .field("jeoc_slv", &self.jeoc_slv())
                .field("jeos_slv", &self.jeos_slv())
                .field("awd1_slv[0]", &self.awd1_slv(0usize))
                .field("awd1_slv[1]", &self.awd1_slv(1usize))
                .field("awd1_slv[2]", &self.awd1_slv(2usize))
                .field("ldordy_slv", &self.ldordy_slv())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Csr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Csr {{ adrdy_mst: {=bool:?}, eosmp_mst: {=bool:?}, eoc_mst: {=bool:?}, eos_mst: {=bool:?}, ovr_mst: {=bool:?}, jeoc_mst: {=bool:?}, jeos_mst: {=bool:?}, awd_mst[0]: {=bool:?}, awd_mst[1]: {=bool:?}, awd_mst[2]: {=bool:?}, ldordy_mst: {=bool:?}, adrdy_slv: {=bool:?}, eosmp_slv: {=bool:?}, eoc_slv: {=bool:?}, eos_slv: {=bool:?}, ovr_slv: {=bool:?}, jeoc_slv: {=bool:?}, jeos_slv: {=bool:?}, awd1_slv[0]: {=bool:?}, awd1_slv[1]: {=bool:?}, awd1_slv[2]: {=bool:?}, ldordy_slv: {=bool:?} }}" , self . adrdy_mst () , self . eosmp_mst () , self . eoc_mst () , self . eos_mst () , self . ovr_mst () , self . jeoc_mst () , self . jeos_mst () , self . awd_mst (0usize) , self . awd_mst (1usize) , self . awd_mst (2usize) , self . ldordy_mst () , self . adrdy_slv () , self . eosmp_slv () , self . eoc_slv () , self . eos_slv () , self . ovr_slv () , self . jeoc_slv () , self . jeos_slv () , self . awd1_slv (0usize) , self . awd1_slv (1usize) , self . awd1_slv (2usize) , self . ldordy_slv ())
        }
    }
}
pub mod vals {
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Damdf {
        #[doc = "Without data packing, CDR/CDR2 not used"]
        NO_PACK = 0x0,
        _RESERVED_1 = 0x01,
        #[doc = "CDR formatted for 32-bit down to 10-bit resolution"]
        FORMAT32TO10 = 0x02,
        #[doc = "CDR formatted for 8-bit resolution"]
        FORMAT8 = 0x03,
    }
    impl Damdf {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Damdf {
            unsafe { core::mem::transmute(val & 0x03) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Damdf {
        #[inline(always)]
        fn from(val: u8) -> Damdf {
            Damdf::from_bits(val)
        }
    }
    impl From<Damdf> for u8 {
        #[inline(always)]
        fn from(val: Damdf) -> u8 {
            Damdf::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Dual {
        #[doc = "Independent mode"]
        INDEPENDENT = 0x0,
        #[doc = "Dual, combined regular simultaneous + injected simultaneous mode"]
        DUAL_RJ = 0x01,
        #[doc = "Dual, combined regular simultaneous + alternate trigger mode"]
        DUAL_RA = 0x02,
        #[doc = "Dual, combined interleaved mode + injected simultaneous mode"]
        DUAL_IJ = 0x03,
        _RESERVED_4 = 0x04,
        #[doc = "Dual, injected simultaneous mode only"]
        DUAL_J = 0x05,
        #[doc = "Dual, regular simultaneous mode only"]
        DUAL_R = 0x06,
        #[doc = "Dual, interleaved mode only"]
        DUAL_I = 0x07,
        _RESERVED_8 = 0x08,
        #[doc = "Dual, alternate trigger mode only"]
        DUAL_A = 0x09,
        _RESERVED_a = 0x0a,
        _RESERVED_b = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
        _RESERVED_10 = 0x10,
        _RESERVED_11 = 0x11,
        _RESERVED_12 = 0x12,
        _RESERVED_13 = 0x13,
        _RESERVED_14 = 0x14,
        _RESERVED_15 = 0x15,
        _RESERVED_16 = 0x16,
        _RESERVED_17 = 0x17,
        _RESERVED_18 = 0x18,
        _RESERVED_19 = 0x19,
        _RESERVED_1a = 0x1a,
        _RESERVED_1b = 0x1b,
        _RESERVED_1c = 0x1c,
        _RESERVED_1d = 0x1d,
        _RESERVED_1e = 0x1e,
        _RESERVED_1f = 0x1f,
    }
    impl Dual {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Dual {
            unsafe { core::mem::transmute(val & 0x1f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Dual {
        #[inline(always)]
        fn from(val: u8) -> Dual {
            Dual::from_bits(val)
        }
    }
    impl From<Dual> for u8 {
        #[inline(always)]
        fn from(val: Dual) -> u8 {
            Dual::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Presc {
        #[doc = "adc_ker_ck_input not divided"]
        DIV1 = 0x0,
        #[doc = "adc_ker_ck_input divided by 2"]
        DIV2 = 0x01,
        #[doc = "adc_ker_ck_input divided by 4"]
        DIV4 = 0x02,
        #[doc = "adc_ker_ck_input divided by 6"]
        DIV6 = 0x03,
        #[doc = "adc_ker_ck_input divided by 8"]
        DIV8 = 0x04,
        #[doc = "adc_ker_ck_input divided by 10"]
        DIV10 = 0x05,
        #[doc = "adc_ker_ck_input divided by 12"]
        DIV12 = 0x06,
        #[doc = "adc_ker_ck_input divided by 16"]
        DIV16 = 0x07,
        #[doc = "adc_ker_ck_input divided by 32"]
        DIV32 = 0x08,
        #[doc = "adc_ker_ck_input divided by 64"]
        DIV64 = 0x09,
        #[doc = "adc_ker_ck_input divided by 128"]
        DIV128 = 0x0a,
        #[doc = "adc_ker_ck_input divided by 256"]
        DIV256 = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
    }
    impl Presc {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Presc {
            unsafe { core::mem::transmute(val & 0x0f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Presc {
        #[inline(always)]
        fn from(val: u8) -> Presc {
            Presc::from_bits(val)
        }
    }
    impl From<Presc> for u8 {
        #[inline(always)]
        fn from(val: Presc) -> u8 {
            Presc::to_bits(val)
        }
    }
}