stm32-metapac 18.0.0

Peripheral Access Crate (PAC) for all STM32 chips, including metadata.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#![allow(clippy::missing_safety_doc)]
#![allow(clippy::identity_op)]
#![allow(clippy::unnecessary_cast)]
#![allow(clippy::erasing_op)]

#[doc = "ADC common registers"]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct AdcCommon {
    ptr: *mut u8,
}
unsafe impl Send for AdcCommon {}
unsafe impl Sync for AdcCommon {}
impl AdcCommon {
    #[inline(always)]
    pub const unsafe fn from_ptr(ptr: *mut ()) -> Self {
        Self { ptr: ptr as _ }
    }
    #[inline(always)]
    pub const fn as_ptr(&self) -> *mut () {
        self.ptr as _
    }
    #[doc = "common status register"]
    #[inline(always)]
    pub const fn csr(self) -> crate::common::Reg<regs::Csr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0usize) as _) }
    }
    #[doc = "common control register"]
    #[inline(always)]
    pub const fn ccr(self) -> crate::common::Reg<regs::Ccr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x08usize) as _) }
    }
    #[doc = "common regular data register for dual mode"]
    #[inline(always)]
    pub const fn cdr(self) -> crate::common::Reg<regs::Cdr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0cusize) as _) }
    }
    #[doc = "hardware configuration register"]
    #[inline(always)]
    pub const fn hwcfgr0(self) -> crate::common::Reg<regs::Hwcfgr0, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xf0usize) as _) }
    }
    #[doc = "version register"]
    #[inline(always)]
    pub const fn verr(self) -> crate::common::Reg<regs::Verr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xf4usize) as _) }
    }
    #[doc = "identification register"]
    #[inline(always)]
    pub const fn ipdr(self) -> crate::common::Reg<u32, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xf8usize) as _) }
    }
    #[doc = "size identification register"]
    #[inline(always)]
    pub const fn sidr(self) -> crate::common::Reg<u32, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xfcusize) as _) }
    }
}
pub mod regs {
    #[doc = "common control register"]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Ccr(pub u32);
    impl Ccr {
        #[doc = "Dual ADC mode selection These bits are written by software to select the operating mode. 0 value means Independent Mode. Values 00001 to 01001 means Dual mode, master and slave ADCs are working together. All other combinations are reserved and must not be programmed Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn dual(&self) -> super::vals::Dual {
            let val = (self.0 >> 0usize) & 0x1f;
            super::vals::Dual::from_bits(val as u8)
        }
        #[doc = "Dual ADC mode selection These bits are written by software to select the operating mode. 0 value means Independent Mode. Values 00001 to 01001 means Dual mode, master and slave ADCs are working together. All other combinations are reserved and must not be programmed Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_dual(&mut self, val: super::vals::Dual) {
            self.0 = (self.0 & !(0x1f << 0usize)) | (((val.to_bits() as u32) & 0x1f) << 0usize);
        }
        #[doc = "Delay between 2 sampling phases These bits are set and cleared by software. These bits are used in dual interleaved modes. Refer to for the value of ADC resolution versus DELAY bits values. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn delay(&self) -> u8 {
            let val = (self.0 >> 8usize) & 0x0f;
            val as u8
        }
        #[doc = "Delay between 2 sampling phases These bits are set and cleared by software. These bits are used in dual interleaved modes. Refer to for the value of ADC resolution versus DELAY bits values. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_delay(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 8usize)) | (((val as u32) & 0x0f) << 8usize);
        }
        #[doc = "DMA configuration (for dual ADC mode) This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN = 1. For more details, refer to Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub const fn dmacfg(&self) -> super::vals::Dmacfg {
            let val = (self.0 >> 13usize) & 0x01;
            super::vals::Dmacfg::from_bits(val as u8)
        }
        #[doc = "DMA configuration (for dual ADC mode) This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN = 1. For more details, refer to Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub fn set_dmacfg(&mut self, val: super::vals::Dmacfg) {
            self.0 = (self.0 & !(0x01 << 13usize)) | (((val.to_bits() as u32) & 0x01) << 13usize);
        }
        #[doc = "Direct memory access mode for dual ADC mode This bitfield is set and cleared by software. Refer to the DMA controller section for more details. Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub const fn mdma(&self) -> super::vals::Mdma {
            let val = (self.0 >> 14usize) & 0x03;
            super::vals::Mdma::from_bits(val as u8)
        }
        #[doc = "Direct memory access mode for dual ADC mode This bitfield is set and cleared by software. Refer to the DMA controller section for more details. Note: The software is allowed to write these bits only when ADSTART = 0 (which ensures that no regular conversion is ongoing)."]
        #[inline(always)]
        pub fn set_mdma(&mut self, val: super::vals::Mdma) {
            self.0 = (self.0 & !(0x03 << 14usize)) | (((val.to_bits() as u32) & 0x03) << 14usize);
        }
        #[doc = "ADC clock mode These bits are set and cleared by software to define the ADC clock scheme (which is common to both master and slave ADCs): In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn ckmode(&self) -> super::vals::Ckmode {
            let val = (self.0 >> 16usize) & 0x03;
            super::vals::Ckmode::from_bits(val as u8)
        }
        #[doc = "ADC clock mode These bits are set and cleared by software to define the ADC clock scheme (which is common to both master and slave ADCs): In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADCs are disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_ckmode(&mut self, val: super::vals::Ckmode) {
            self.0 = (self.0 & !(0x03 << 16usize)) | (((val.to_bits() as u32) & 0x03) << 16usize);
        }
        #[doc = "ADC prescaler These bits are set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs. other: reserved Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). The ADC prescaler value is applied only when CKMODE\\[1:0\\]
= 0b00."]
        #[inline(always)]
        pub const fn presc(&self) -> super::vals::Presc {
            let val = (self.0 >> 18usize) & 0x0f;
            super::vals::Presc::from_bits(val as u8)
        }
        #[doc = "ADC prescaler These bits are set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs. other: reserved Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, JADSTART = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). The ADC prescaler value is applied only when CKMODE\\[1:0\\]
= 0b00."]
        #[inline(always)]
        pub fn set_presc(&mut self, val: super::vals::Presc) {
            self.0 = (self.0 & !(0x0f << 18usize)) | (((val.to_bits() as u32) & 0x0f) << 18usize);
        }
        #[doc = "VREFINT enable This bit is set and cleared by software to enable/disable the VREFINT channel"]
        #[inline(always)]
        pub const fn vrefen(&self) -> bool {
            let val = (self.0 >> 22usize) & 0x01;
            val != 0
        }
        #[doc = "VREFINT enable This bit is set and cleared by software to enable/disable the VREFINT channel"]
        #[inline(always)]
        pub fn set_vrefen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val as u32) & 0x01) << 22usize);
        }
        #[doc = "VSENSE enable This bit is set and cleared by software to control VSENSE"]
        #[inline(always)]
        pub const fn tsen(&self) -> bool {
            let val = (self.0 >> 23usize) & 0x01;
            val != 0
        }
        #[doc = "VSENSE enable This bit is set and cleared by software to control VSENSE"]
        #[inline(always)]
        pub fn set_tsen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 23usize)) | (((val as u32) & 0x01) << 23usize);
        }
        #[doc = "VBAT enable This bit is set and cleared by software to control"]
        #[inline(always)]
        pub const fn vbaten(&self) -> bool {
            let val = (self.0 >> 24usize) & 0x01;
            val != 0
        }
        #[doc = "VBAT enable This bit is set and cleared by software to control"]
        #[inline(always)]
        pub fn set_vbaten(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 24usize)) | (((val as u32) & 0x01) << 24usize);
        }
    }
    impl Default for Ccr {
        #[inline(always)]
        fn default() -> Ccr {
            Ccr(0)
        }
    }
    impl core::fmt::Debug for Ccr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Ccr")
                .field("dual", &self.dual())
                .field("delay", &self.delay())
                .field("dmacfg", &self.dmacfg())
                .field("mdma", &self.mdma())
                .field("ckmode", &self.ckmode())
                .field("presc", &self.presc())
                .field("vrefen", &self.vrefen())
                .field("tsen", &self.tsen())
                .field("vbaten", &self.vbaten())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Ccr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Ccr {{ dual: {:?}, delay: {=u8:?}, dmacfg: {:?}, mdma: {:?}, ckmode: {:?}, presc: {:?}, vrefen: {=bool:?}, tsen: {=bool:?}, vbaten: {=bool:?} }}" , self . dual () , self . delay () , self . dmacfg () , self . mdma () , self . ckmode () , self . presc () , self . vrefen () , self . tsen () , self . vbaten ())
        }
    }
    #[doc = "common regular data register for dual mode"]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cdr(pub u32);
    impl Cdr {
        #[doc = "Regular data of the master ADC. In dual mode, these bits contain the regular data of the master ADC. Refer to . The data alignment is applied as described in offset (ADC_DR, OFFSET, OFFSET_CH, ALIGN)) In MDMA = 0b11 mode, bits 15:8 contains SLV_ADC_DR\\[7:0\\], bits 7:0 contains MST_ADC_DR\\[7:0\\]."]
        #[inline(always)]
        pub const fn rdata_mst(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0xffff;
            val as u16
        }
        #[doc = "Regular data of the master ADC. In dual mode, these bits contain the regular data of the master ADC. Refer to . The data alignment is applied as described in offset (ADC_DR, OFFSET, OFFSET_CH, ALIGN)) In MDMA = 0b11 mode, bits 15:8 contains SLV_ADC_DR\\[7:0\\], bits 7:0 contains MST_ADC_DR\\[7:0\\]."]
        #[inline(always)]
        pub fn set_rdata_mst(&mut self, val: u16) {
            self.0 = (self.0 & !(0xffff << 0usize)) | (((val as u32) & 0xffff) << 0usize);
        }
        #[doc = "Regular data of the slave ADC In dual mode, these bits contain the regular data of the slave ADC. Refer to Dual ADC modes. The data alignment is applied as described in offset (ADC_DR, OFFSET, OFFSET_CH, ALIGN))."]
        #[inline(always)]
        pub const fn rdata_slv(&self) -> u16 {
            let val = (self.0 >> 16usize) & 0xffff;
            val as u16
        }
        #[doc = "Regular data of the slave ADC In dual mode, these bits contain the regular data of the slave ADC. Refer to Dual ADC modes. The data alignment is applied as described in offset (ADC_DR, OFFSET, OFFSET_CH, ALIGN))."]
        #[inline(always)]
        pub fn set_rdata_slv(&mut self, val: u16) {
            self.0 = (self.0 & !(0xffff << 16usize)) | (((val as u32) & 0xffff) << 16usize);
        }
    }
    impl Default for Cdr {
        #[inline(always)]
        fn default() -> Cdr {
            Cdr(0)
        }
    }
    impl core::fmt::Debug for Cdr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cdr")
                .field("rdata_mst", &self.rdata_mst())
                .field("rdata_slv", &self.rdata_slv())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cdr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Cdr {{ rdata_mst: {=u16:?}, rdata_slv: {=u16:?} }}",
                self.rdata_mst(),
                self.rdata_slv()
            )
        }
    }
    #[doc = "common status register"]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Csr(pub u32);
    impl Csr {
        #[doc = "Master ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn adrdy_mst(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "Master ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_adrdy_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "End of Sampling phase flag of the master ADC This bit is a copy of the EOSMP bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eosmp_mst(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "End of Sampling phase flag of the master ADC This bit is a copy of the EOSMP bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eosmp_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
        #[doc = "End of regular conversion of the master ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eoc_mst(&self) -> bool {
            let val = (self.0 >> 2usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular conversion of the master ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eoc_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 2usize)) | (((val as u32) & 0x01) << 2usize);
        }
        #[doc = "End of regular sequence flag of the master ADC This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eos_mst(&self) -> bool {
            let val = (self.0 >> 3usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular sequence flag of the master ADC This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eos_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 3usize)) | (((val as u32) & 0x01) << 3usize);
        }
        #[doc = "Overrun flag of the master ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn ovr_mst(&self) -> bool {
            let val = (self.0 >> 4usize) & 0x01;
            val != 0
        }
        #[doc = "Overrun flag of the master ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_ovr_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val as u32) & 0x01) << 4usize);
        }
        #[doc = "End of injected conversion flag of the master ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeoc_mst(&self) -> bool {
            let val = (self.0 >> 5usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected conversion flag of the master ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeoc_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 5usize)) | (((val as u32) & 0x01) << 5usize);
        }
        #[doc = "End of injected sequence flag of the master ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeos_mst(&self) -> bool {
            let val = (self.0 >> 6usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected sequence flag of the master ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeos_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 6usize)) | (((val as u32) & 0x01) << 6usize);
        }
        #[doc = "Analog watchdog 1 flag of the master ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn awd_mst(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog 1 flag of the master ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_awd_mst(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "Injected Context Queue Overflow flag of the master ADC This bit is a copy of the JQOVF bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jqovf_mst(&self) -> bool {
            let val = (self.0 >> 10usize) & 0x01;
            val != 0
        }
        #[doc = "Injected Context Queue Overflow flag of the master ADC This bit is a copy of the JQOVF bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jqovf_mst(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 10usize)) | (((val as u32) & 0x01) << 10usize);
        }
        #[doc = "Slave ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn adrdy_slv(&self) -> bool {
            let val = (self.0 >> 16usize) & 0x01;
            val != 0
        }
        #[doc = "Slave ADC ready This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_adrdy_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 16usize)) | (((val as u32) & 0x01) << 16usize);
        }
        #[doc = "End of Sampling phase flag of the slave ADC This bit is a copy of the EOSMP2 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eosmp_slv(&self) -> bool {
            let val = (self.0 >> 17usize) & 0x01;
            val != 0
        }
        #[doc = "End of Sampling phase flag of the slave ADC This bit is a copy of the EOSMP2 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eosmp_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 17usize)) | (((val as u32) & 0x01) << 17usize);
        }
        #[doc = "End of regular conversion of the slave ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eoc_slv(&self) -> bool {
            let val = (self.0 >> 18usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular conversion of the slave ADC This bit is a copy of the EOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eoc_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 18usize)) | (((val as u32) & 0x01) << 18usize);
        }
        #[doc = "End of regular sequence flag of the slave ADC. This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn eos_slv(&self) -> bool {
            let val = (self.0 >> 19usize) & 0x01;
            val != 0
        }
        #[doc = "End of regular sequence flag of the slave ADC. This bit is a copy of the EOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_eos_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 19usize)) | (((val as u32) & 0x01) << 19usize);
        }
        #[doc = "Overrun flag of the slave ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn ovr_slv(&self) -> bool {
            let val = (self.0 >> 20usize) & 0x01;
            val != 0
        }
        #[doc = "Overrun flag of the slave ADC This bit is a copy of the OVR bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_ovr_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 20usize)) | (((val as u32) & 0x01) << 20usize);
        }
        #[doc = "End of injected conversion flag of the slave ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeoc_slv(&self) -> bool {
            let val = (self.0 >> 21usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected conversion flag of the slave ADC This bit is a copy of the JEOC bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeoc_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 21usize)) | (((val as u32) & 0x01) << 21usize);
        }
        #[doc = "End of injected sequence flag of the slave ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jeos_slv(&self) -> bool {
            let val = (self.0 >> 22usize) & 0x01;
            val != 0
        }
        #[doc = "End of injected sequence flag of the slave ADC This bit is a copy of the JEOS bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jeos_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val as u32) & 0x01) << 22usize);
        }
        #[doc = "Analog watchdog 1 flag of the slave ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn awd_slv(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 23usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog 1 flag of the slave ADC This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_awd_slv(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 23usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "Injected Context Queue Overflow flag of the slave ADC This bit is a copy of the JQOVF bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub const fn jqovf_slv(&self) -> bool {
            let val = (self.0 >> 26usize) & 0x01;
            val != 0
        }
        #[doc = "Injected Context Queue Overflow flag of the slave ADC This bit is a copy of the JQOVF bit in the corresponding ADC_ISR register."]
        #[inline(always)]
        pub fn set_jqovf_slv(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 26usize)) | (((val as u32) & 0x01) << 26usize);
        }
    }
    impl Default for Csr {
        #[inline(always)]
        fn default() -> Csr {
            Csr(0)
        }
    }
    impl core::fmt::Debug for Csr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Csr")
                .field("adrdy_mst", &self.adrdy_mst())
                .field("eosmp_mst", &self.eosmp_mst())
                .field("eoc_mst", &self.eoc_mst())
                .field("eos_mst", &self.eos_mst())
                .field("ovr_mst", &self.ovr_mst())
                .field("jeoc_mst", &self.jeoc_mst())
                .field("jeos_mst", &self.jeos_mst())
                .field("awd_mst[0]", &self.awd_mst(0usize))
                .field("awd_mst[1]", &self.awd_mst(1usize))
                .field("awd_mst[2]", &self.awd_mst(2usize))
                .field("jqovf_mst", &self.jqovf_mst())
                .field("adrdy_slv", &self.adrdy_slv())
                .field("eosmp_slv", &self.eosmp_slv())
                .field("eoc_slv", &self.eoc_slv())
                .field("eos_slv", &self.eos_slv())
                .field("ovr_slv", &self.ovr_slv())
                .field("jeoc_slv", &self.jeoc_slv())
                .field("jeos_slv", &self.jeos_slv())
                .field("awd_slv[0]", &self.awd_slv(0usize))
                .field("awd_slv[1]", &self.awd_slv(1usize))
                .field("awd_slv[2]", &self.awd_slv(2usize))
                .field("jqovf_slv", &self.jqovf_slv())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Csr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Csr {{ adrdy_mst: {=bool:?}, eosmp_mst: {=bool:?}, eoc_mst: {=bool:?}, eos_mst: {=bool:?}, ovr_mst: {=bool:?}, jeoc_mst: {=bool:?}, jeos_mst: {=bool:?}, awd_mst[0]: {=bool:?}, awd_mst[1]: {=bool:?}, awd_mst[2]: {=bool:?}, jqovf_mst: {=bool:?}, adrdy_slv: {=bool:?}, eosmp_slv: {=bool:?}, eoc_slv: {=bool:?}, eos_slv: {=bool:?}, ovr_slv: {=bool:?}, jeoc_slv: {=bool:?}, jeos_slv: {=bool:?}, awd_slv[0]: {=bool:?}, awd_slv[1]: {=bool:?}, awd_slv[2]: {=bool:?}, jqovf_slv: {=bool:?} }}" , self . adrdy_mst () , self . eosmp_mst () , self . eoc_mst () , self . eos_mst () , self . ovr_mst () , self . jeoc_mst () , self . jeos_mst () , self . awd_mst (0usize) , self . awd_mst (1usize) , self . awd_mst (2usize) , self . jqovf_mst () , self . adrdy_slv () , self . eosmp_slv () , self . eoc_slv () , self . eos_slv () , self . ovr_slv () , self . jeoc_slv () , self . jeos_slv () , self . awd_slv (0usize) , self . awd_slv (1usize) , self . awd_slv (2usize) , self . jqovf_slv ())
        }
    }
    #[doc = "hardware configuration register"]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Hwcfgr0(pub u32);
    impl Hwcfgr0 {
        #[doc = "Number of ADCs implemented"]
        #[inline(always)]
        pub const fn adcnum(&self) -> u8 {
            let val = (self.0 >> 0usize) & 0x0f;
            val as u8
        }
        #[doc = "Number of ADCs implemented"]
        #[inline(always)]
        pub fn set_adcnum(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 0usize)) | (((val as u32) & 0x0f) << 0usize);
        }
        #[doc = "Number of pipeline stages"]
        #[inline(always)]
        pub const fn mulpipe(&self) -> u8 {
            let val = (self.0 >> 4usize) & 0x0f;
            val as u8
        }
        #[doc = "Number of pipeline stages"]
        #[inline(always)]
        pub fn set_mulpipe(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 4usize)) | (((val as u32) & 0x0f) << 4usize);
        }
        #[doc = "Number of option bits 0002: 2 option bits implemented in the ADC option register (ADC_OR) at address offset 0xC8."]
        #[inline(always)]
        pub const fn opbits(&self) -> u8 {
            let val = (self.0 >> 8usize) & 0x0f;
            val as u8
        }
        #[doc = "Number of option bits 0002: 2 option bits implemented in the ADC option register (ADC_OR) at address offset 0xC8."]
        #[inline(always)]
        pub fn set_opbits(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 8usize)) | (((val as u32) & 0x0f) << 8usize);
        }
        #[doc = "Idle value for non-selected channels"]
        #[inline(always)]
        pub const fn idlevalue(&self) -> super::vals::Idlevalue {
            let val = (self.0 >> 12usize) & 0x0f;
            super::vals::Idlevalue::from_bits(val as u8)
        }
        #[doc = "Idle value for non-selected channels"]
        #[inline(always)]
        pub fn set_idlevalue(&mut self, val: super::vals::Idlevalue) {
            self.0 = (self.0 & !(0x0f << 12usize)) | (((val.to_bits() as u32) & 0x0f) << 12usize);
        }
    }
    impl Default for Hwcfgr0 {
        #[inline(always)]
        fn default() -> Hwcfgr0 {
            Hwcfgr0(0)
        }
    }
    impl core::fmt::Debug for Hwcfgr0 {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Hwcfgr0")
                .field("adcnum", &self.adcnum())
                .field("mulpipe", &self.mulpipe())
                .field("opbits", &self.opbits())
                .field("idlevalue", &self.idlevalue())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Hwcfgr0 {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Hwcfgr0 {{ adcnum: {=u8:?}, mulpipe: {=u8:?}, opbits: {=u8:?}, idlevalue: {:?} }}",
                self.adcnum(),
                self.mulpipe(),
                self.opbits(),
                self.idlevalue()
            )
        }
    }
    #[doc = "version register"]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Verr(pub u32);
    impl Verr {
        #[doc = "Minor revision These bits returns the ADC IP minor revision 0002: Major revision = X.2."]
        #[inline(always)]
        pub const fn minrev(&self) -> u8 {
            let val = (self.0 >> 0usize) & 0x0f;
            val as u8
        }
        #[doc = "Minor revision These bits returns the ADC IP minor revision 0002: Major revision = X.2."]
        #[inline(always)]
        pub fn set_minrev(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 0usize)) | (((val as u32) & 0x0f) << 0usize);
        }
        #[doc = "Major revision These bits returns the ADC IP major revision"]
        #[inline(always)]
        pub const fn majrev(&self) -> u8 {
            let val = (self.0 >> 4usize) & 0x0f;
            val as u8
        }
        #[doc = "Major revision These bits returns the ADC IP major revision"]
        #[inline(always)]
        pub fn set_majrev(&mut self, val: u8) {
            self.0 = (self.0 & !(0x0f << 4usize)) | (((val as u32) & 0x0f) << 4usize);
        }
    }
    impl Default for Verr {
        #[inline(always)]
        fn default() -> Verr {
            Verr(0)
        }
    }
    impl core::fmt::Debug for Verr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Verr")
                .field("minrev", &self.minrev())
                .field("majrev", &self.majrev())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Verr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Verr {{ minrev: {=u8:?}, majrev: {=u8:?} }}",
                self.minrev(),
                self.majrev()
            )
        }
    }
}
pub mod vals {
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Ckmode {
        #[doc = "Use Kernel Clock adc_ker_ck_input divided by PRESC. Asynchronous to AHB clock"]
        ASYNCHRONOUS = 0x0,
        #[doc = "Use AHB clock rcc_hclk3. In this case rcc_hclk must equal sys_d1cpre_ck"]
        SYNC_DIV1 = 0x01,
        #[doc = "Use AHB clock rcc_hclk3 divided by 2"]
        SYNC_DIV2 = 0x02,
        #[doc = "Use AHB clock rcc_hclk3 divided by 4"]
        SYNC_DIV4 = 0x03,
    }
    impl Ckmode {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Ckmode {
            unsafe { core::mem::transmute(val & 0x03) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Ckmode {
        #[inline(always)]
        fn from(val: u8) -> Ckmode {
            Ckmode::from_bits(val)
        }
    }
    impl From<Ckmode> for u8 {
        #[inline(always)]
        fn from(val: Ckmode) -> u8 {
            Ckmode::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Dmacfg {
        #[doc = "DMA One Shot mode selected"]
        ONE_SHOT = 0x0,
        #[doc = "DMA Circular mode selected"]
        CIRCULAR = 0x01,
    }
    impl Dmacfg {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Dmacfg {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Dmacfg {
        #[inline(always)]
        fn from(val: u8) -> Dmacfg {
            Dmacfg::from_bits(val)
        }
    }
    impl From<Dmacfg> for u8 {
        #[inline(always)]
        fn from(val: Dmacfg) -> u8 {
            Dmacfg::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Dual {
        #[doc = "Independent mode"]
        INDEPENDENT = 0x0,
        #[doc = "Dual, combined regular simultaneous + injected simultaneous mode"]
        DUAL_RJ = 0x01,
        #[doc = "Dual, combined regular simultaneous + alternate trigger mode"]
        DUAL_RA = 0x02,
        #[doc = "Dual, combined interleaved mode + injected simultaneous mode"]
        DUAL_IJ = 0x03,
        _RESERVED_4 = 0x04,
        #[doc = "Dual, injected simultaneous mode only"]
        DUAL_J = 0x05,
        #[doc = "Dual, regular simultaneous mode only"]
        DUAL_R = 0x06,
        #[doc = "Dual, interleaved mode only"]
        DUAL_I = 0x07,
        _RESERVED_8 = 0x08,
        #[doc = "Dual, alternate trigger mode only"]
        DUAL_A = 0x09,
        _RESERVED_a = 0x0a,
        _RESERVED_b = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
        _RESERVED_10 = 0x10,
        _RESERVED_11 = 0x11,
        _RESERVED_12 = 0x12,
        _RESERVED_13 = 0x13,
        _RESERVED_14 = 0x14,
        _RESERVED_15 = 0x15,
        _RESERVED_16 = 0x16,
        _RESERVED_17 = 0x17,
        _RESERVED_18 = 0x18,
        _RESERVED_19 = 0x19,
        _RESERVED_1a = 0x1a,
        _RESERVED_1b = 0x1b,
        _RESERVED_1c = 0x1c,
        _RESERVED_1d = 0x1d,
        _RESERVED_1e = 0x1e,
        _RESERVED_1f = 0x1f,
    }
    impl Dual {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Dual {
            unsafe { core::mem::transmute(val & 0x1f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Dual {
        #[inline(always)]
        fn from(val: u8) -> Dual {
            Dual::from_bits(val)
        }
    }
    impl From<Dual> for u8 {
        #[inline(always)]
        fn from(val: Dual) -> u8 {
            Dual::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Idlevalue {
        #[doc = "Dummy channel selection is 0x13"]
        H13 = 0x0,
        #[doc = "Dummy channel selection is 0x1F"]
        H1F = 0x01,
        _RESERVED_2 = 0x02,
        _RESERVED_3 = 0x03,
        _RESERVED_4 = 0x04,
        _RESERVED_5 = 0x05,
        _RESERVED_6 = 0x06,
        _RESERVED_7 = 0x07,
        _RESERVED_8 = 0x08,
        _RESERVED_9 = 0x09,
        _RESERVED_a = 0x0a,
        _RESERVED_b = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
    }
    impl Idlevalue {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Idlevalue {
            unsafe { core::mem::transmute(val & 0x0f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Idlevalue {
        #[inline(always)]
        fn from(val: u8) -> Idlevalue {
            Idlevalue::from_bits(val)
        }
    }
    impl From<Idlevalue> for u8 {
        #[inline(always)]
        fn from(val: Idlevalue) -> u8 {
            Idlevalue::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Mdma {
        #[doc = "Without data packing, CDR/CDR2 not used"]
        NO_PACK = 0x0,
        _RESERVED_1 = 0x01,
        #[doc = "CDR formatted for 32-bit down to 10-bit resolution"]
        FORMAT32TO10 = 0x02,
        #[doc = "CDR formatted for 8-bit resolution"]
        FORMAT8 = 0x03,
    }
    impl Mdma {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Mdma {
            unsafe { core::mem::transmute(val & 0x03) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Mdma {
        #[inline(always)]
        fn from(val: u8) -> Mdma {
            Mdma::from_bits(val)
        }
    }
    impl From<Mdma> for u8 {
        #[inline(always)]
        fn from(val: Mdma) -> u8 {
            Mdma::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Presc {
        #[doc = "adc_ker_ck_input not divided"]
        DIV1 = 0x0,
        #[doc = "adc_ker_ck_input divided by 2"]
        DIV2 = 0x01,
        #[doc = "adc_ker_ck_input divided by 4"]
        DIV4 = 0x02,
        #[doc = "adc_ker_ck_input divided by 6"]
        DIV6 = 0x03,
        #[doc = "adc_ker_ck_input divided by 8"]
        DIV8 = 0x04,
        #[doc = "adc_ker_ck_input divided by 10"]
        DIV10 = 0x05,
        #[doc = "adc_ker_ck_input divided by 12"]
        DIV12 = 0x06,
        #[doc = "adc_ker_ck_input divided by 16"]
        DIV16 = 0x07,
        #[doc = "adc_ker_ck_input divided by 32"]
        DIV32 = 0x08,
        #[doc = "adc_ker_ck_input divided by 64"]
        DIV64 = 0x09,
        #[doc = "adc_ker_ck_input divided by 128"]
        DIV128 = 0x0a,
        #[doc = "adc_ker_ck_input divided by 256"]
        DIV256 = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
    }
    impl Presc {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Presc {
            unsafe { core::mem::transmute(val & 0x0f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Presc {
        #[inline(always)]
        fn from(val: u8) -> Presc {
            Presc::from_bits(val)
        }
    }
    impl From<Presc> for u8 {
        #[inline(always)]
        fn from(val: Presc) -> u8 {
            Presc::to_bits(val)
        }
    }
}