stm32-metapac 18.0.0

Peripheral Access Crate (PAC) for all STM32 chips, including metadata.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
#![allow(clippy::missing_safety_doc)]
#![allow(clippy::identity_op)]
#![allow(clippy::unnecessary_cast)]
#![allow(clippy::erasing_op)]

#[doc = "ADC register block."]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Adc4 {
    ptr: *mut u8,
}
unsafe impl Send for Adc4 {}
unsafe impl Sync for Adc4 {}
impl Adc4 {
    #[inline(always)]
    pub const unsafe fn from_ptr(ptr: *mut ()) -> Self {
        Self { ptr: ptr as _ }
    }
    #[inline(always)]
    pub const fn as_ptr(&self) -> *mut () {
        self.ptr as _
    }
    #[doc = "ADC interrupt and status register."]
    #[inline(always)]
    pub const fn isr(self) -> crate::common::Reg<regs::Isr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0usize) as _) }
    }
    #[doc = "ADC interrupt enable register."]
    #[inline(always)]
    pub const fn ier(self) -> crate::common::Reg<regs::Ier, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x04usize) as _) }
    }
    #[doc = "ADC control register."]
    #[inline(always)]
    pub const fn cr(self) -> crate::common::Reg<regs::Cr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x08usize) as _) }
    }
    #[doc = "ADC configuration register 1."]
    #[inline(always)]
    pub const fn cfgr1(self) -> crate::common::Reg<regs::Cfgr1, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0cusize) as _) }
    }
    #[doc = "ADC configuration register 2."]
    #[inline(always)]
    pub const fn cfgr2(self) -> crate::common::Reg<regs::Cfgr2, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x10usize) as _) }
    }
    #[doc = "ADC sampling time register."]
    #[inline(always)]
    pub const fn smpr(self) -> crate::common::Reg<regs::Smpr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x14usize) as _) }
    }
    #[doc = "ADC watchdog threshold register."]
    #[inline(always)]
    pub const fn awd1tr(self) -> crate::common::Reg<regs::Awd1tr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x20usize) as _) }
    }
    #[doc = "ADC watchdog threshold register."]
    #[inline(always)]
    pub const fn awd2tr(self) -> crate::common::Reg<regs::Awd2tr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x24usize) as _) }
    }
    #[doc = "ADC channel selection register \\[alternate\\]."]
    #[inline(always)]
    pub const fn chselr(self) -> crate::common::Reg<regs::Chselr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x28usize) as _) }
    }
    #[doc = "ADC channel selection register \\[alternate\\]."]
    #[inline(always)]
    pub const fn chselr_alternate(self) -> crate::common::Reg<regs::ChselrAlternate, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x28usize) as _) }
    }
    #[doc = "ADC watchdog threshold register."]
    #[inline(always)]
    pub const fn awd3tr(self) -> crate::common::Reg<regs::Awd3tr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x2cusize) as _) }
    }
    #[doc = "ADC data register."]
    #[inline(always)]
    pub const fn dr(self) -> crate::common::Reg<regs::Dr, crate::common::R> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x40usize) as _) }
    }
    #[doc = "ADC Power register."]
    #[inline(always)]
    pub const fn pwr(self) -> crate::common::Reg<regs::Pwr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x44usize) as _) }
    }
    #[doc = "ADC Analog Watchdog 2 Configuration register."]
    #[inline(always)]
    pub const fn awd2cr(self) -> crate::common::Reg<regs::Awd2cr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xa0usize) as _) }
    }
    #[doc = "ADC Analog Watchdog 3 Configuration register."]
    #[inline(always)]
    pub const fn awd3cr(self) -> crate::common::Reg<regs::Awd3cr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xa4usize) as _) }
    }
    #[doc = "ADC Calibration factor."]
    #[inline(always)]
    pub const fn calfact(self) -> crate::common::Reg<regs::Calfact, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0xc4usize) as _) }
    }
    #[doc = "ADC common configuration register."]
    #[inline(always)]
    pub const fn ccr(self) -> crate::common::Reg<regs::Ccr, crate::common::RW> {
        unsafe { crate::common::Reg::from_ptr(self.ptr.add(0x0308usize) as _) }
    }
}
pub mod regs {
    #[doc = "ADC watchdog threshold register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Awd1tr(pub u32);
    impl Awd1tr {
        #[doc = "Analog watchdog 1 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn lt1(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 1 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_lt1(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 0usize)) | (((val as u32) & 0x0fff) << 0usize);
        }
        #[doc = "Analog watchdog 1 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn ht1(&self) -> u16 {
            let val = (self.0 >> 16usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 1 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_ht1(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 16usize)) | (((val as u32) & 0x0fff) << 16usize);
        }
    }
    impl Default for Awd1tr {
        #[inline(always)]
        fn default() -> Awd1tr {
            Awd1tr(0)
        }
    }
    impl core::fmt::Debug for Awd1tr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Awd1tr")
                .field("lt1", &self.lt1())
                .field("ht1", &self.ht1())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Awd1tr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Awd1tr {{ lt1: {=u16:?}, ht1: {=u16:?} }}", self.lt1(), self.ht1())
        }
    }
    #[doc = "ADC Analog Watchdog 2 Configuration register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Awd2cr(pub u32);
    impl Awd2cr {
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through AWD2CR must be also configured into the ADC_CHSELR registers. Refer to SQ8\\[3:0\\]
for a definition of channel selection. The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awd2ch(&self, n: usize) -> bool {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). Note: The channels selected through AWD2CR must be also configured into the ADC_CHSELR registers. Refer to SQ8\\[3:0\\]
for a definition of channel selection. The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awd2ch(&mut self, n: usize, val: bool) {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
    }
    impl Default for Awd2cr {
        #[inline(always)]
        fn default() -> Awd2cr {
            Awd2cr(0)
        }
    }
    impl core::fmt::Debug for Awd2cr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Awd2cr")
                .field("awd2ch[0]", &self.awd2ch(0usize))
                .field("awd2ch[1]", &self.awd2ch(1usize))
                .field("awd2ch[2]", &self.awd2ch(2usize))
                .field("awd2ch[3]", &self.awd2ch(3usize))
                .field("awd2ch[4]", &self.awd2ch(4usize))
                .field("awd2ch[5]", &self.awd2ch(5usize))
                .field("awd2ch[6]", &self.awd2ch(6usize))
                .field("awd2ch[7]", &self.awd2ch(7usize))
                .field("awd2ch[8]", &self.awd2ch(8usize))
                .field("awd2ch[9]", &self.awd2ch(9usize))
                .field("awd2ch[10]", &self.awd2ch(10usize))
                .field("awd2ch[11]", &self.awd2ch(11usize))
                .field("awd2ch[12]", &self.awd2ch(12usize))
                .field("awd2ch[13]", &self.awd2ch(13usize))
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Awd2cr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Awd2cr {{ awd2ch[0]: {=bool:?}, awd2ch[1]: {=bool:?}, awd2ch[2]: {=bool:?}, awd2ch[3]: {=bool:?}, awd2ch[4]: {=bool:?}, awd2ch[5]: {=bool:?}, awd2ch[6]: {=bool:?}, awd2ch[7]: {=bool:?}, awd2ch[8]: {=bool:?}, awd2ch[9]: {=bool:?}, awd2ch[10]: {=bool:?}, awd2ch[11]: {=bool:?}, awd2ch[12]: {=bool:?}, awd2ch[13]: {=bool:?} }}" , self . awd2ch (0usize) , self . awd2ch (1usize) , self . awd2ch (2usize) , self . awd2ch (3usize) , self . awd2ch (4usize) , self . awd2ch (5usize) , self . awd2ch (6usize) , self . awd2ch (7usize) , self . awd2ch (8usize) , self . awd2ch (9usize) , self . awd2ch (10usize) , self . awd2ch (11usize) , self . awd2ch (12usize) , self . awd2ch (13usize))
        }
    }
    #[doc = "ADC watchdog threshold register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Awd2tr(pub u32);
    impl Awd2tr {
        #[doc = "Analog watchdog 2 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn lt2(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 2 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_lt2(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 0usize)) | (((val as u32) & 0x0fff) << 0usize);
        }
        #[doc = "Analog watchdog 2 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn ht2(&self) -> u16 {
            let val = (self.0 >> 16usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 2 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_ht2(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 16usize)) | (((val as u32) & 0x0fff) << 16usize);
        }
    }
    impl Default for Awd2tr {
        #[inline(always)]
        fn default() -> Awd2tr {
            Awd2tr(0)
        }
    }
    impl core::fmt::Debug for Awd2tr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Awd2tr")
                .field("lt2", &self.lt2())
                .field("ht2", &self.ht2())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Awd2tr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Awd2tr {{ lt2: {=u16:?}, ht2: {=u16:?} }}", self.lt2(), self.ht2())
        }
    }
    #[doc = "ADC Analog Watchdog 3 Configuration register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Awd3cr(pub u32);
    impl Awd3cr {
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through AWD3CR must be also configured into the ADC_CHSELR registers. Refer to SQ8\\[3:0\\]
for a definition of channel selection. The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awd3ch(&self, n: usize) -> bool {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). Note: The channels selected through AWD3CR must be also configured into the ADC_CHSELR registers. Refer to SQ8\\[3:0\\]
for a definition of channel selection. The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awd3ch(&mut self, n: usize, val: bool) {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
    }
    impl Default for Awd3cr {
        #[inline(always)]
        fn default() -> Awd3cr {
            Awd3cr(0)
        }
    }
    impl core::fmt::Debug for Awd3cr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Awd3cr")
                .field("awd3ch[0]", &self.awd3ch(0usize))
                .field("awd3ch[1]", &self.awd3ch(1usize))
                .field("awd3ch[2]", &self.awd3ch(2usize))
                .field("awd3ch[3]", &self.awd3ch(3usize))
                .field("awd3ch[4]", &self.awd3ch(4usize))
                .field("awd3ch[5]", &self.awd3ch(5usize))
                .field("awd3ch[6]", &self.awd3ch(6usize))
                .field("awd3ch[7]", &self.awd3ch(7usize))
                .field("awd3ch[8]", &self.awd3ch(8usize))
                .field("awd3ch[9]", &self.awd3ch(9usize))
                .field("awd3ch[10]", &self.awd3ch(10usize))
                .field("awd3ch[11]", &self.awd3ch(11usize))
                .field("awd3ch[12]", &self.awd3ch(12usize))
                .field("awd3ch[13]", &self.awd3ch(13usize))
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Awd3cr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Awd3cr {{ awd3ch[0]: {=bool:?}, awd3ch[1]: {=bool:?}, awd3ch[2]: {=bool:?}, awd3ch[3]: {=bool:?}, awd3ch[4]: {=bool:?}, awd3ch[5]: {=bool:?}, awd3ch[6]: {=bool:?}, awd3ch[7]: {=bool:?}, awd3ch[8]: {=bool:?}, awd3ch[9]: {=bool:?}, awd3ch[10]: {=bool:?}, awd3ch[11]: {=bool:?}, awd3ch[12]: {=bool:?}, awd3ch[13]: {=bool:?} }}" , self . awd3ch (0usize) , self . awd3ch (1usize) , self . awd3ch (2usize) , self . awd3ch (3usize) , self . awd3ch (4usize) , self . awd3ch (5usize) , self . awd3ch (6usize) , self . awd3ch (7usize) , self . awd3ch (8usize) , self . awd3ch (9usize) , self . awd3ch (10usize) , self . awd3ch (11usize) , self . awd3ch (12usize) , self . awd3ch (13usize))
        }
    }
    #[doc = "ADC watchdog threshold register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Awd3tr(pub u32);
    impl Awd3tr {
        #[doc = "Analog watchdog 3lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn lt3(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 3lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_lt3(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 0usize)) | (((val as u32) & 0x0fff) << 0usize);
        }
        #[doc = "Analog watchdog 3 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub const fn ht3(&self) -> u16 {
            let val = (self.0 >> 16usize) & 0x0fff;
            val as u16
        }
        #[doc = "Analog watchdog 3 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 20.4.25: Analog window watchdog on page 638."]
        #[inline(always)]
        pub fn set_ht3(&mut self, val: u16) {
            self.0 = (self.0 & !(0x0fff << 16usize)) | (((val as u32) & 0x0fff) << 16usize);
        }
    }
    impl Default for Awd3tr {
        #[inline(always)]
        fn default() -> Awd3tr {
            Awd3tr(0)
        }
    }
    impl core::fmt::Debug for Awd3tr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Awd3tr")
                .field("lt3", &self.lt3())
                .field("ht3", &self.ht3())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Awd3tr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Awd3tr {{ lt3: {=u16:?}, ht3: {=u16:?} }}", self.lt3(), self.ht3())
        }
    }
    #[doc = "ADC Calibration factor."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Calfact(pub u32);
    impl Calfact {
        #[doc = "Calibration factor These bits are written by hardware or by software. Once a calibration is complete, they are updated by hardware with the calibration factors. Software can write these bits with a new calibration factor. If the new calibration factor is different from the current one stored into the analog ADC, it is then applied once a new calibration is launched. Just after a calibration is complete, DATA\\[6:0\\]
contains the calibration factor. Note: Software can write these bits only when ADEN = 1 (ADC is enabled and no calibration is ongoing and no conversion is ongoing)."]
        #[inline(always)]
        pub const fn calfact(&self) -> u8 {
            let val = (self.0 >> 0usize) & 0x7f;
            val as u8
        }
        #[doc = "Calibration factor These bits are written by hardware or by software. Once a calibration is complete, they are updated by hardware with the calibration factors. Software can write these bits with a new calibration factor. If the new calibration factor is different from the current one stored into the analog ADC, it is then applied once a new calibration is launched. Just after a calibration is complete, DATA\\[6:0\\]
contains the calibration factor. Note: Software can write these bits only when ADEN = 1 (ADC is enabled and no calibration is ongoing and no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_calfact(&mut self, val: u8) {
            self.0 = (self.0 & !(0x7f << 0usize)) | (((val as u32) & 0x7f) << 0usize);
        }
    }
    impl Default for Calfact {
        #[inline(always)]
        fn default() -> Calfact {
            Calfact(0)
        }
    }
    impl core::fmt::Debug for Calfact {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Calfact").field("calfact", &self.calfact()).finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Calfact {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Calfact {{ calfact: {=u8:?} }}", self.calfact())
        }
    }
    #[doc = "ADC common configuration register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Ccr(pub u32);
    impl Ccr {
        #[doc = "ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. Other: Reserved Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn presc(&self) -> super::vals::Presc {
            let val = (self.0 >> 18usize) & 0x0f;
            super::vals::Presc::from_bits(val as u8)
        }
        #[doc = "ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. Other: Reserved Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_presc(&mut self, val: super::vals::Presc) {
            self.0 = (self.0 & !(0x0f << 18usize)) | (((val.to_bits() as u32) & 0x0f) << 18usize);
        }
        #[doc = "VsubREFINT/sub enable This bit is set and cleared by software to enable/disable the VsubREFINT/sub buffer. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn vrefen(&self) -> bool {
            let val = (self.0 >> 22usize) & 0x01;
            val != 0
        }
        #[doc = "VsubREFINT/sub enable This bit is set and cleared by software to enable/disable the VsubREFINT/sub buffer. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_vrefen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val as u32) & 0x01) << 22usize);
        }
        #[doc = "Temperature sensor selection This bit is set and cleared by software to enable/disable the temperature sensor. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn vsensesel(&self) -> bool {
            let val = (self.0 >> 23usize) & 0x01;
            val != 0
        }
        #[doc = "Temperature sensor selection This bit is set and cleared by software to enable/disable the temperature sensor. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_vsensesel(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 23usize)) | (((val as u32) & 0x01) << 23usize);
        }
    }
    impl Default for Ccr {
        #[inline(always)]
        fn default() -> Ccr {
            Ccr(0)
        }
    }
    impl core::fmt::Debug for Ccr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Ccr")
                .field("presc", &self.presc())
                .field("vrefen", &self.vrefen())
                .field("vsensesel", &self.vsensesel())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Ccr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Ccr {{ presc: {:?}, vrefen: {=bool:?}, vsensesel: {=bool:?} }}",
                self.presc(),
                self.vrefen(),
                self.vsensesel()
            )
        }
    }
    #[doc = "ADC configuration register 1."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cfgr1(pub u32);
    impl Cfgr1 {
        #[doc = "Direct memory access enable This bit is set and cleared by software to enable the generation of DMA requests. This allows the automatic management of the converted data by the DMA controller. For more details, refer to Section : Managing converted data using the DMA on page 632. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn dmaen(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "Direct memory access enable This bit is set and cleared by software to enable the generation of DMA requests. This allows the automatic management of the converted data by the DMA controller. For more details, refer to Section : Managing converted data using the DMA on page 632. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_dmaen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "Direct memory access configuration This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN = 1. For more details, refer to Section : Managing converted data using the DMA on page 632 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn dmacfg(&self) -> super::vals::Dmacfg {
            let val = (self.0 >> 1usize) & 0x01;
            super::vals::Dmacfg::from_bits(val as u8)
        }
        #[doc = "Direct memory access configuration This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN = 1. For more details, refer to Section : Managing converted data using the DMA on page 632 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_dmacfg(&mut self, val: super::vals::Dmacfg) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val.to_bits() as u32) & 0x01) << 1usize);
        }
        #[doc = "Data resolution These bits are written by software to select the resolution of the conversion. Note: The software is allowed to write these bits only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn res(&self) -> super::vals::Res {
            let val = (self.0 >> 2usize) & 0x03;
            super::vals::Res::from_bits(val as u8)
        }
        #[doc = "Data resolution These bits are written by software to select the resolution of the conversion. Note: The software is allowed to write these bits only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_res(&mut self, val: super::vals::Res) {
            self.0 = (self.0 & !(0x03 << 2usize)) | (((val.to_bits() as u32) & 0x03) << 2usize);
        }
        #[doc = "Scan sequence direction This bit is set and cleared by software to select the direction in which the channels is scanned in the sequence. It is effective only if CHSELRMOD bit is cleared to 0. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn scandir(&self) -> super::vals::Scandir {
            let val = (self.0 >> 4usize) & 0x01;
            super::vals::Scandir::from_bits(val as u8)
        }
        #[doc = "Scan sequence direction This bit is set and cleared by software to select the direction in which the channels is scanned in the sequence. It is effective only if CHSELRMOD bit is cleared to 0. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_scandir(&mut self, val: super::vals::Scandir) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val.to_bits() as u32) & 0x01) << 4usize);
        }
        #[doc = "Data alignment This bit is set and cleared by software to select right or left alignment. Refer to Figure 78: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 631 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn align(&self) -> super::vals::Align {
            let val = (self.0 >> 5usize) & 0x01;
            super::vals::Align::from_bits(val as u8)
        }
        #[doc = "Data alignment This bit is set and cleared by software to select right or left alignment. Refer to Figure 78: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 631 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_align(&mut self, val: super::vals::Align) {
            self.0 = (self.0 & !(0x01 << 5usize)) | (((val.to_bits() as u32) & 0x01) << 5usize);
        }
        #[doc = "External trigger selection These bits select the external event used to trigger the start of conversion (refer to table ADC interconnection in Section 20.4.2: ADC pins and internal signals for details): Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn extsel(&self) -> super::vals::Extsel {
            let val = (self.0 >> 6usize) & 0x07;
            super::vals::Extsel::from_bits(val as u8)
        }
        #[doc = "External trigger selection These bits select the external event used to trigger the start of conversion (refer to table ADC interconnection in Section 20.4.2: ADC pins and internal signals for details): Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_extsel(&mut self, val: super::vals::Extsel) {
            self.0 = (self.0 & !(0x07 << 6usize)) | (((val.to_bits() as u32) & 0x07) << 6usize);
        }
        #[doc = "External trigger enable and polarity selection These bits are set and cleared by software to select the external trigger polarity and enable the trigger. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn exten(&self) -> super::vals::Exten {
            let val = (self.0 >> 10usize) & 0x03;
            super::vals::Exten::from_bits(val as u8)
        }
        #[doc = "External trigger enable and polarity selection These bits are set and cleared by software to select the external trigger polarity and enable the trigger. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_exten(&mut self, val: super::vals::Exten) {
            self.0 = (self.0 & !(0x03 << 10usize)) | (((val.to_bits() as u32) & 0x03) << 10usize);
        }
        #[doc = "Overrun management mode This bit is set and cleared by software and configure the way data overruns are managed. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ovrmod(&self) -> super::vals::Ovrmod {
            let val = (self.0 >> 12usize) & 0x01;
            super::vals::Ovrmod::from_bits(val as u8)
        }
        #[doc = "Overrun management mode This bit is set and cleared by software and configure the way data overruns are managed. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ovrmod(&mut self, val: super::vals::Ovrmod) {
            self.0 = (self.0 & !(0x01 << 12usize)) | (((val.to_bits() as u32) & 0x01) << 12usize);
        }
        #[doc = "Single / continuous conversion mode This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn cont(&self) -> super::vals::Cont {
            let val = (self.0 >> 13usize) & 0x01;
            super::vals::Cont::from_bits(val as u8)
        }
        #[doc = "Single / continuous conversion mode This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_cont(&mut self, val: super::vals::Cont) {
            self.0 = (self.0 & !(0x01 << 13usize)) | (((val.to_bits() as u32) & 0x01) << 13usize);
        }
        #[doc = "Wait conversion mode This bit is set and cleared by software to enable/disable wait conversion mode.sup./sup Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn wait(&self) -> bool {
            let val = (self.0 >> 14usize) & 0x01;
            val != 0
        }
        #[doc = "Wait conversion mode This bit is set and cleared by software to enable/disable wait conversion mode.sup./sup Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_wait(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 14usize)) | (((val as u32) & 0x01) << 14usize);
        }
        #[doc = "Discontinuous mode This bit is set and cleared by software to enable/disable discontinuous mode. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn discen(&self) -> bool {
            let val = (self.0 >> 16usize) & 0x01;
            val != 0
        }
        #[doc = "Discontinuous mode This bit is set and cleared by software to enable/disable discontinuous mode. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_discen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 16usize)) | (((val as u32) & 0x01) << 16usize);
        }
        #[doc = "Mode selection of the CHSELR register This bit is set and cleared by software to control the ADC_CHSELR feature: Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn chselrmod(&self) -> super::vals::Chselrmod {
            let val = (self.0 >> 21usize) & 0x01;
            super::vals::Chselrmod::from_bits(val as u8)
        }
        #[doc = "Mode selection of the CHSELR register This bit is set and cleared by software to control the ADC_CHSELR feature: Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_chselrmod(&mut self, val: super::vals::Chselrmod) {
            self.0 = (self.0 & !(0x01 << 21usize)) | (((val.to_bits() as u32) & 0x01) << 21usize);
        }
        #[doc = "Enable the watchdog on a single channel or on all channels This bit is set and cleared by software to enable the analog watchdog on the channel identified by the AWDCH\\[4:0\\]
bits or on all the channels Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awd1sgl(&self) -> super::vals::Awd1sgl {
            let val = (self.0 >> 22usize) & 0x01;
            super::vals::Awd1sgl::from_bits(val as u8)
        }
        #[doc = "Enable the watchdog on a single channel or on all channels This bit is set and cleared by software to enable the analog watchdog on the channel identified by the AWDCH\\[4:0\\]
bits or on all the channels Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awd1sgl(&mut self, val: super::vals::Awd1sgl) {
            self.0 = (self.0 & !(0x01 << 22usize)) | (((val.to_bits() as u32) & 0x01) << 22usize);
        }
        #[doc = "Analog watchdog enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awd1en(&self) -> bool {
            let val = (self.0 >> 23usize) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awd1en(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 23usize)) | (((val as u32) & 0x01) << 23usize);
        }
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. ..... Others: Reserved The channel selected by the AWDCH\\[4:0\\]
bits must be also set into the CHSELR register. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awd1ch(&self) -> u8 {
            let val = (self.0 >> 26usize) & 0x1f;
            val as u8
        }
        #[doc = "Analog watchdog channel selection These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. ..... Others: Reserved The channel selected by the AWDCH\\[4:0\\]
bits must be also set into the CHSELR register. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awd1ch(&mut self, val: u8) {
            self.0 = (self.0 & !(0x1f << 26usize)) | (((val as u32) & 0x1f) << 26usize);
        }
    }
    impl Default for Cfgr1 {
        #[inline(always)]
        fn default() -> Cfgr1 {
            Cfgr1(0)
        }
    }
    impl core::fmt::Debug for Cfgr1 {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cfgr1")
                .field("dmaen", &self.dmaen())
                .field("dmacfg", &self.dmacfg())
                .field("res", &self.res())
                .field("scandir", &self.scandir())
                .field("align", &self.align())
                .field("extsel", &self.extsel())
                .field("exten", &self.exten())
                .field("ovrmod", &self.ovrmod())
                .field("cont", &self.cont())
                .field("wait", &self.wait())
                .field("discen", &self.discen())
                .field("chselrmod", &self.chselrmod())
                .field("awd1sgl", &self.awd1sgl())
                .field("awd1en", &self.awd1en())
                .field("awd1ch", &self.awd1ch())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cfgr1 {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Cfgr1 {{ dmaen: {=bool:?}, dmacfg: {:?}, res: {:?}, scandir: {:?}, align: {:?}, extsel: {:?}, exten: {:?}, ovrmod: {:?}, cont: {:?}, wait: {=bool:?}, discen: {=bool:?}, chselrmod: {:?}, awd1sgl: {:?}, awd1en: {=bool:?}, awd1ch: {=u8:?} }}" , self . dmaen () , self . dmacfg () , self . res () , self . scandir () , self . align () , self . extsel () , self . exten () , self . ovrmod () , self . cont () , self . wait () , self . discen () , self . chselrmod () , self . awd1sgl () , self . awd1en () , self . awd1ch ())
        }
    }
    #[doc = "ADC configuration register 2."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cfgr2(pub u32);
    impl Cfgr2 {
        #[doc = "Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ovse(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ovse(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ovsr(&self) -> super::vals::OversamplingRatio {
            let val = (self.0 >> 2usize) & 0x07;
            super::vals::OversamplingRatio::from_bits(val as u8)
        }
        #[doc = "Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ovsr(&mut self, val: super::vals::OversamplingRatio) {
            self.0 = (self.0 & !(0x07 << 2usize)) | (((val.to_bits() as u32) & 0x07) << 2usize);
        }
        #[doc = "Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1(which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ovss(&self) -> super::vals::Ovss {
            let val = (self.0 >> 5usize) & 0x0f;
            super::vals::Ovss::from_bits(val as u8)
        }
        #[doc = "Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1(which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ovss(&mut self, val: super::vals::Ovss) {
            self.0 = (self.0 & !(0x0f << 5usize)) | (((val.to_bits() as u32) & 0x0f) << 5usize);
        }
        #[doc = "Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn tovs(&self) -> super::vals::Tovs {
            let val = (self.0 >> 9usize) & 0x01;
            super::vals::Tovs::from_bits(val as u8)
        }
        #[doc = "Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_tovs(&mut self, val: super::vals::Tovs) {
            self.0 = (self.0 & !(0x01 << 9usize)) | (((val.to_bits() as u32) & 0x01) << 9usize);
        }
        #[doc = "Low frequency trigger mode enable This bit must be set by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn lftrig(&self) -> bool {
            let val = (self.0 >> 29usize) & 0x01;
            val != 0
        }
        #[doc = "Low frequency trigger mode enable This bit must be set by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_lftrig(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 29usize)) | (((val as u32) & 0x01) << 29usize);
        }
    }
    impl Default for Cfgr2 {
        #[inline(always)]
        fn default() -> Cfgr2 {
            Cfgr2(0)
        }
    }
    impl core::fmt::Debug for Cfgr2 {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cfgr2")
                .field("ovse", &self.ovse())
                .field("ovsr", &self.ovsr())
                .field("ovss", &self.ovss())
                .field("tovs", &self.tovs())
                .field("lftrig", &self.lftrig())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cfgr2 {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Cfgr2 {{ ovse: {=bool:?}, ovsr: {:?}, ovss: {:?}, tovs: {:?}, lftrig: {=bool:?} }}",
                self.ovse(),
                self.ovsr(),
                self.ovss(),
                self.tovs(),
                self.lftrig()
            )
        }
    }
    #[doc = "ADC channel selection register \\[alternate\\]."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Chselr(pub u32);
    impl Chselr {
        #[doc = "Channel x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn chsel0(&self, n: usize) -> bool {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Channel x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_chsel0(&mut self, n: usize, val: bool) {
            assert!(n < 14usize);
            let offs = 0usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
    }
    impl Default for Chselr {
        #[inline(always)]
        fn default() -> Chselr {
            Chselr(0)
        }
    }
    impl core::fmt::Debug for Chselr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Chselr")
                .field("chsel0[0]", &self.chsel0(0usize))
                .field("chsel0[1]", &self.chsel0(1usize))
                .field("chsel0[2]", &self.chsel0(2usize))
                .field("chsel0[3]", &self.chsel0(3usize))
                .field("chsel0[4]", &self.chsel0(4usize))
                .field("chsel0[5]", &self.chsel0(5usize))
                .field("chsel0[6]", &self.chsel0(6usize))
                .field("chsel0[7]", &self.chsel0(7usize))
                .field("chsel0[8]", &self.chsel0(8usize))
                .field("chsel0[9]", &self.chsel0(9usize))
                .field("chsel0[10]", &self.chsel0(10usize))
                .field("chsel0[11]", &self.chsel0(11usize))
                .field("chsel0[12]", &self.chsel0(12usize))
                .field("chsel0[13]", &self.chsel0(13usize))
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Chselr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Chselr {{ chsel0[0]: {=bool:?}, chsel0[1]: {=bool:?}, chsel0[2]: {=bool:?}, chsel0[3]: {=bool:?}, chsel0[4]: {=bool:?}, chsel0[5]: {=bool:?}, chsel0[6]: {=bool:?}, chsel0[7]: {=bool:?}, chsel0[8]: {=bool:?}, chsel0[9]: {=bool:?}, chsel0[10]: {=bool:?}, chsel0[11]: {=bool:?}, chsel0[12]: {=bool:?}, chsel0[13]: {=bool:?} }}" , self . chsel0 (0usize) , self . chsel0 (1usize) , self . chsel0 (2usize) , self . chsel0 (3usize) , self . chsel0 (4usize) , self . chsel0 (5usize) , self . chsel0 (6usize) , self . chsel0 (7usize) , self . chsel0 (8usize) , self . chsel0 (9usize) , self . chsel0 (10usize) , self . chsel0 (11usize) , self . chsel0 (12usize) , self . chsel0 (13usize))
        }
    }
    #[doc = "ADC channel selection register \\[alternate\\]."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct ChselrAlternate(pub u32);
    impl ChselrAlternate {
        #[doc = "1st conversion of the sequence These bits are programmed by software with the channel number assigned to the 1st conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8\\[3:0\\]
for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn sq(&self, n: usize) -> u8 {
            assert!(n < 8usize);
            let offs = 0usize + n * 4usize;
            let val = (self.0 >> offs) & 0x0f;
            val as u8
        }
        #[doc = "1st conversion of the sequence These bits are programmed by software with the channel number assigned to the 1st conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8\\[3:0\\]
for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_sq(&mut self, n: usize, val: u8) {
            assert!(n < 8usize);
            let offs = 0usize + n * 4usize;
            self.0 = (self.0 & !(0x0f << offs)) | (((val as u32) & 0x0f) << offs);
        }
    }
    impl Default for ChselrAlternate {
        #[inline(always)]
        fn default() -> ChselrAlternate {
            ChselrAlternate(0)
        }
    }
    impl core::fmt::Debug for ChselrAlternate {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("ChselrAlternate")
                .field("sq[0]", &self.sq(0usize))
                .field("sq[1]", &self.sq(1usize))
                .field("sq[2]", &self.sq(2usize))
                .field("sq[3]", &self.sq(3usize))
                .field("sq[4]", &self.sq(4usize))
                .field("sq[5]", &self.sq(5usize))
                .field("sq[6]", &self.sq(6usize))
                .field("sq[7]", &self.sq(7usize))
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for ChselrAlternate {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "ChselrAlternate {{ sq[0]: {=u8:?}, sq[1]: {=u8:?}, sq[2]: {=u8:?}, sq[3]: {=u8:?}, sq[4]: {=u8:?}, sq[5]: {=u8:?}, sq[6]: {=u8:?}, sq[7]: {=u8:?} }}" , self . sq (0usize) , self . sq (1usize) , self . sq (2usize) , self . sq (3usize) , self . sq (4usize) , self . sq (5usize) , self . sq (6usize) , self . sq (7usize))
        }
    }
    #[doc = "ADC control register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Cr(pub u32);
    impl Cr {
        #[doc = "ADC enable command This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the ADRDY flag has been set. It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command. Note: The software is allowed to set ADEN only when all bits of CR registers are 0 (ADCAL = 0, ADSTP = 0, ADSTART = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn aden(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "ADC enable command This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the ADRDY flag has been set. It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command. Note: The software is allowed to set ADEN only when all bits of CR registers are 0 (ADCAL = 0, ADSTP = 0, ADSTART = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_aden(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "ADC disable command This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state (OFF state). It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at this time). Note: Setting ADDIS to 1 is only effective when ADEN = 1 and ADSTART = 0 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn addis(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "ADC disable command This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state (OFF state). It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at this time). Note: Setting ADDIS to 1 is only effective when ADEN = 1 and ADSTART = 0 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_addis(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
        #[doc = "ADC start conversion command This bit is set by software to start ADC conversion. Depending on the EXTEN \\[1:0\\]
configuration bits, a conversion either starts immediately (software trigger configuration) or once a hardware trigger event occurs (hardware trigger configuration). It is cleared by hardware: In single conversion mode (CONT = 0, DISCEN = 0), when software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion Sequence (EOS) flag. In discontinuous conversion mode(CONT=0, DISCEN = 1), when the software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion (EOC) flag. In all other cases: after the execution of the ADSTP command, at the same time as the ADSTP bit is cleared by hardware. Note: The software is allowed to set ADSTART only when ADEN = 1 and ADDIS = 0 (ADC is enabled and there is no pending request to disable the ADC)."]
        #[inline(always)]
        pub const fn adstart(&self) -> bool {
            let val = (self.0 >> 2usize) & 0x01;
            val != 0
        }
        #[doc = "ADC start conversion command This bit is set by software to start ADC conversion. Depending on the EXTEN \\[1:0\\]
configuration bits, a conversion either starts immediately (software trigger configuration) or once a hardware trigger event occurs (hardware trigger configuration). It is cleared by hardware: In single conversion mode (CONT = 0, DISCEN = 0), when software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion Sequence (EOS) flag. In discontinuous conversion mode(CONT=0, DISCEN = 1), when the software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion (EOC) flag. In all other cases: after the execution of the ADSTP command, at the same time as the ADSTP bit is cleared by hardware. Note: The software is allowed to set ADSTART only when ADEN = 1 and ADDIS = 0 (ADC is enabled and there is no pending request to disable the ADC)."]
        #[inline(always)]
        pub fn set_adstart(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 2usize)) | (((val as u32) & 0x01) << 2usize);
        }
        #[doc = "ADC stop conversion command This bit is set by software to stop and discard an ongoing conversion (ADSTP Command). It is cleared by hardware when the conversion is effectively discarded and the ADC is ready to accept a new start conversion command. Note: To clear the A/D converter state, ADSTP must be set to 1 even if ADSTART is cleared to 0 after the software trigger A/D conversion. It is recommended to set ADSTP to 1 whenever the configuration needs to be modified."]
        #[inline(always)]
        pub const fn adstp(&self) -> bool {
            let val = (self.0 >> 4usize) & 0x01;
            val != 0
        }
        #[doc = "ADC stop conversion command This bit is set by software to stop and discard an ongoing conversion (ADSTP Command). It is cleared by hardware when the conversion is effectively discarded and the ADC is ready to accept a new start conversion command. Note: To clear the A/D converter state, ADSTP must be set to 1 even if ADSTART is cleared to 0 after the software trigger A/D conversion. It is recommended to set ADSTP to 1 whenever the configuration needs to be modified."]
        #[inline(always)]
        pub fn set_adstp(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val as u32) & 0x01) << 4usize);
        }
        #[doc = "ADC voltage regulator enable This bit is set by software, to enable the ADC internal voltage regulator. The voltage regulator output is available after tsubADCVREG_SETUP/sub. It is cleared by software to disable the voltage regulator. It can be cleared only if ADEN is et to 0. Note: The software is allowed to program this bit field only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub const fn advregen(&self) -> bool {
            let val = (self.0 >> 28usize) & 0x01;
            val != 0
        }
        #[doc = "ADC voltage regulator enable This bit is set by software, to enable the ADC internal voltage regulator. The voltage regulator output is available after tsubADCVREG_SETUP/sub. It is cleared by software to disable the voltage regulator. It can be cleared only if ADEN is et to 0. Note: The software is allowed to program this bit field only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0)."]
        #[inline(always)]
        pub fn set_advregen(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 28usize)) | (((val as u32) & 0x01) << 28usize);
        }
        #[doc = "ADC calibration This bit is set by software to start the calibration of the ADC. It is cleared by hardware after calibration is complete. Note: The software is allowed to set ADCAL only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0, AUTOFF = 0, and ADEN = 0). Note: The software is allowed to update the calibration factor by writing CALFACT only when ADEN is set to 1 and ADSTART is cleared to 0 by writing ADSTP to 1 (ADC enabled and no conversion is ongoing)."]
        #[inline(always)]
        pub const fn adcal(&self) -> bool {
            let val = (self.0 >> 31usize) & 0x01;
            val != 0
        }
        #[doc = "ADC calibration This bit is set by software to start the calibration of the ADC. It is cleared by hardware after calibration is complete. Note: The software is allowed to set ADCAL only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0, AUTOFF = 0, and ADEN = 0). Note: The software is allowed to update the calibration factor by writing CALFACT only when ADEN is set to 1 and ADSTART is cleared to 0 by writing ADSTP to 1 (ADC enabled and no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_adcal(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 31usize)) | (((val as u32) & 0x01) << 31usize);
        }
    }
    impl Default for Cr {
        #[inline(always)]
        fn default() -> Cr {
            Cr(0)
        }
    }
    impl core::fmt::Debug for Cr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Cr")
                .field("aden", &self.aden())
                .field("addis", &self.addis())
                .field("adstart", &self.adstart())
                .field("adstp", &self.adstp())
                .field("advregen", &self.advregen())
                .field("adcal", &self.adcal())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Cr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Cr {{ aden: {=bool:?}, addis: {=bool:?}, adstart: {=bool:?}, adstp: {=bool:?}, advregen: {=bool:?}, adcal: {=bool:?} }}" , self . aden () , self . addis () , self . adstart () , self . adstp () , self . advregen () , self . adcal ())
        }
    }
    #[doc = "ADC data register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Dr(pub u32);
    impl Dr {
        #[doc = "Converted data These bits are read-only. They contain the conversion result from the last converted channel. The data are left- or right-aligned as shown in Figure 78: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 631. Just after a calibration is complete, DATA\\[6:0\\]
contains the calibration factor."]
        #[inline(always)]
        pub const fn data(&self) -> u16 {
            let val = (self.0 >> 0usize) & 0xffff;
            val as u16
        }
        #[doc = "Converted data These bits are read-only. They contain the conversion result from the last converted channel. The data are left- or right-aligned as shown in Figure 78: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 631. Just after a calibration is complete, DATA\\[6:0\\]
contains the calibration factor."]
        #[inline(always)]
        pub fn set_data(&mut self, val: u16) {
            self.0 = (self.0 & !(0xffff << 0usize)) | (((val as u32) & 0xffff) << 0usize);
        }
    }
    impl Default for Dr {
        #[inline(always)]
        fn default() -> Dr {
            Dr(0)
        }
    }
    impl core::fmt::Debug for Dr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Dr").field("data", &self.data()).finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Dr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(f, "Dr {{ data: {=u16:?} }}", self.data())
        }
    }
    #[doc = "ADC interrupt enable register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Ier(pub u32);
    impl Ier {
        #[doc = "ADC ready interrupt enable This bit is set and cleared by software to enable/disable the ADC Ready interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn adrdyie(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "ADC ready interrupt enable This bit is set and cleared by software to enable/disable the ADC Ready interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_adrdyie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "End of sampling flag interrupt enable This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn eosmpie(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "End of sampling flag interrupt enable This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_eosmpie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
        #[doc = "End of conversion interrupt enable This bit is set and cleared by software to enable/disable the end of conversion interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn eocie(&self) -> bool {
            let val = (self.0 >> 2usize) & 0x01;
            val != 0
        }
        #[doc = "End of conversion interrupt enable This bit is set and cleared by software to enable/disable the end of conversion interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_eocie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 2usize)) | (((val as u32) & 0x01) << 2usize);
        }
        #[doc = "End of conversion sequence interrupt enable This bit is set and cleared by software to enable/disable the end of sequence of conversions interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn eosie(&self) -> bool {
            let val = (self.0 >> 3usize) & 0x01;
            val != 0
        }
        #[doc = "End of conversion sequence interrupt enable This bit is set and cleared by software to enable/disable the end of sequence of conversions interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_eosie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 3usize)) | (((val as u32) & 0x01) << 3usize);
        }
        #[doc = "Overrun interrupt enable This bit is set and cleared by software to enable/disable the overrun interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ovrie(&self) -> bool {
            let val = (self.0 >> 4usize) & 0x01;
            val != 0
        }
        #[doc = "Overrun interrupt enable This bit is set and cleared by software to enable/disable the overrun interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ovrie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val as u32) & 0x01) << 4usize);
        }
        #[doc = "Analog watchdog 1 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. Note: The Software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn awdie(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog 1 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. Note: The Software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_awdie(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "End of calibration interrupt enable This bit is set and cleared by software to enable/disable the end of calibration interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn eocalie(&self) -> bool {
            let val = (self.0 >> 11usize) & 0x01;
            val != 0
        }
        #[doc = "End of calibration interrupt enable This bit is set and cleared by software to enable/disable the end of calibration interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_eocalie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 11usize)) | (((val as u32) & 0x01) << 11usize);
        }
        #[doc = "LDO ready interrupt enable This bit is set and cleared by software. It is used to enable/disable the LDORDY interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensure that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn ldordyie(&self) -> bool {
            let val = (self.0 >> 12usize) & 0x01;
            val != 0
        }
        #[doc = "LDO ready interrupt enable This bit is set and cleared by software. It is used to enable/disable the LDORDY interrupt. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 by writing ADSTP to 1 (this ensure that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_ldordyie(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 12usize)) | (((val as u32) & 0x01) << 12usize);
        }
    }
    impl Default for Ier {
        #[inline(always)]
        fn default() -> Ier {
            Ier(0)
        }
    }
    impl core::fmt::Debug for Ier {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Ier")
                .field("adrdyie", &self.adrdyie())
                .field("eosmpie", &self.eosmpie())
                .field("eocie", &self.eocie())
                .field("eosie", &self.eosie())
                .field("ovrie", &self.ovrie())
                .field("awdie[0]", &self.awdie(0usize))
                .field("awdie[1]", &self.awdie(1usize))
                .field("awdie[2]", &self.awdie(2usize))
                .field("eocalie", &self.eocalie())
                .field("ldordyie", &self.ldordyie())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Ier {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Ier {{ adrdyie: {=bool:?}, eosmpie: {=bool:?}, eocie: {=bool:?}, eosie: {=bool:?}, ovrie: {=bool:?}, awdie[0]: {=bool:?}, awdie[1]: {=bool:?}, awdie[2]: {=bool:?}, eocalie: {=bool:?}, ldordyie: {=bool:?} }}" , self . adrdyie () , self . eosmpie () , self . eocie () , self . eosie () , self . ovrie () , self . awdie (0usize) , self . awdie (1usize) , self . awdie (2usize) , self . eocalie () , self . ldordyie ())
        }
    }
    #[doc = "ADC interrupt and status register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Isr(pub u32);
    impl Isr {
        #[doc = "ADC ready This bit is set by hardware after the ADC has been enabled (ADEN = 1) and when the ADC reaches a state where it is ready to accept conversion requests. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub const fn adrdy(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "ADC ready This bit is set by hardware after the ADC has been enabled (ADEN = 1) and when the ADC reaches a state where it is ready to accept conversion requests. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub fn set_adrdy(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "End of sampling flag This bit is set by hardware during the conversion, at the end of the sampling phase.It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub const fn eosmp(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "End of sampling flag This bit is set by hardware during the conversion, at the end of the sampling phase.It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub fn set_eosmp(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
        #[doc = "End of conversion flag This bit is set by hardware at the end of each conversion of a channel when a new data result is available in the DR register. It is cleared by software writing 1 to it or by reading the ADC_DR register."]
        #[inline(always)]
        pub const fn eoc(&self) -> bool {
            let val = (self.0 >> 2usize) & 0x01;
            val != 0
        }
        #[doc = "End of conversion flag This bit is set by hardware at the end of each conversion of a channel when a new data result is available in the DR register. It is cleared by software writing 1 to it or by reading the ADC_DR register."]
        #[inline(always)]
        pub fn set_eoc(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 2usize)) | (((val as u32) & 0x01) << 2usize);
        }
        #[doc = "End of sequence flag This bit is set by hardware at the end of the conversion of a sequence of channels selected by the CHSEL bits. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub const fn eos(&self) -> bool {
            let val = (self.0 >> 3usize) & 0x01;
            val != 0
        }
        #[doc = "End of sequence flag This bit is set by hardware at the end of the conversion of a sequence of channels selected by the CHSEL bits. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub fn set_eos(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 3usize)) | (((val as u32) & 0x01) << 3usize);
        }
        #[doc = "ADC overrun This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete while the EOC flag was already set. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub const fn ovr(&self) -> bool {
            let val = (self.0 >> 4usize) & 0x01;
            val != 0
        }
        #[doc = "ADC overrun This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete while the EOC flag was already set. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub fn set_ovr(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 4usize)) | (((val as u32) & 0x01) << 4usize);
        }
        #[doc = "Analog watchdog 1 flag This bit is set by hardware when the converted voltage crosses the values programmed in TR1 and ADC_HR1 registers. It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub const fn awd(&self, n: usize) -> bool {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            val != 0
        }
        #[doc = "Analog watchdog 1 flag This bit is set by hardware when the converted voltage crosses the values programmed in TR1 and ADC_HR1 registers. It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub fn set_awd(&mut self, n: usize, val: bool) {
            assert!(n < 3usize);
            let offs = 7usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val as u32) & 0x01) << offs);
        }
        #[doc = "End of calibration flag This bit is set by hardware when calibration is complete. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub const fn eocal(&self) -> bool {
            let val = (self.0 >> 11usize) & 0x01;
            val != 0
        }
        #[doc = "End of calibration flag This bit is set by hardware when calibration is complete. It is cleared by software writing 1 to it."]
        #[inline(always)]
        pub fn set_eocal(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 11usize)) | (((val as u32) & 0x01) << 11usize);
        }
        #[doc = "LDO ready This bit is set by hardware. It indicates that the ADC internal LDO output is ready. It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub const fn ldordy(&self) -> bool {
            let val = (self.0 >> 12usize) & 0x01;
            val != 0
        }
        #[doc = "LDO ready This bit is set by hardware. It indicates that the ADC internal LDO output is ready. It is cleared by software by writing 1 to it."]
        #[inline(always)]
        pub fn set_ldordy(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 12usize)) | (((val as u32) & 0x01) << 12usize);
        }
    }
    impl Default for Isr {
        #[inline(always)]
        fn default() -> Isr {
            Isr(0)
        }
    }
    impl core::fmt::Debug for Isr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Isr")
                .field("adrdy", &self.adrdy())
                .field("eosmp", &self.eosmp())
                .field("eoc", &self.eoc())
                .field("eos", &self.eos())
                .field("ovr", &self.ovr())
                .field("awd[0]", &self.awd(0usize))
                .field("awd[1]", &self.awd(1usize))
                .field("awd[2]", &self.awd(2usize))
                .field("eocal", &self.eocal())
                .field("ldordy", &self.ldordy())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Isr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Isr {{ adrdy: {=bool:?}, eosmp: {=bool:?}, eoc: {=bool:?}, eos: {=bool:?}, ovr: {=bool:?}, awd[0]: {=bool:?}, awd[1]: {=bool:?}, awd[2]: {=bool:?}, eocal: {=bool:?}, ldordy: {=bool:?} }}" , self . adrdy () , self . eosmp () , self . eoc () , self . eos () , self . ovr () , self . awd (0usize) , self . awd (1usize) , self . awd (2usize) , self . eocal () , self . ldordy ())
        }
    }
    #[doc = "ADC Power register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Pwr(pub u32);
    impl Pwr {
        #[doc = "Auto-off mode bit This bit is set and cleared by software. it is used to enable/disable the Auto-off mode. Note: The software is allowed to write this bit only when ADEN bit is cleared to 0 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn autoff(&self) -> bool {
            let val = (self.0 >> 0usize) & 0x01;
            val != 0
        }
        #[doc = "Auto-off mode bit This bit is set and cleared by software. it is used to enable/disable the Auto-off mode. Note: The software is allowed to write this bit only when ADEN bit is cleared to 0 (this ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_autoff(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 0usize)) | (((val as u32) & 0x01) << 0usize);
        }
        #[doc = "Deep-power-down mode bit This bit is set and cleared by software. It is used to enable/disable Deep-power-down mode in Autonomous mode when the ADC is not used. Note: The software is allowed to write this bit only when ADEN bit is cleared to 0 (this ensures that no conversion is ongoing). Note: Setting DPD in Auto-off mode automatically disables the LDO."]
        #[inline(always)]
        pub const fn dpd(&self) -> bool {
            let val = (self.0 >> 1usize) & 0x01;
            val != 0
        }
        #[doc = "Deep-power-down mode bit This bit is set and cleared by software. It is used to enable/disable Deep-power-down mode in Autonomous mode when the ADC is not used. Note: The software is allowed to write this bit only when ADEN bit is cleared to 0 (this ensures that no conversion is ongoing). Note: Setting DPD in Auto-off mode automatically disables the LDO."]
        #[inline(always)]
        pub fn set_dpd(&mut self, val: bool) {
            self.0 = (self.0 & !(0x01 << 1usize)) | (((val as u32) & 0x01) << 1usize);
        }
    }
    impl Default for Pwr {
        #[inline(always)]
        fn default() -> Pwr {
            Pwr(0)
        }
    }
    impl core::fmt::Debug for Pwr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Pwr")
                .field("autoff", &self.autoff())
                .field("dpd", &self.dpd())
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Pwr {
        fn format(&self, f: defmt::Formatter) {
            defmt::write!(
                f,
                "Pwr {{ autoff: {=bool:?}, dpd: {=bool:?} }}",
                self.autoff(),
                self.dpd()
            )
        }
    }
    #[doc = "ADC sampling time register."]
    #[repr(transparent)]
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub struct Smpr(pub u32);
    impl Smpr {
        #[doc = "Sampling time selection 1 These bits are written by software to select the sampling time that applies to all channels. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn smp(&self, n: usize) -> super::vals::SampleTime {
            assert!(n < 2usize);
            let offs = 0usize + n * 4usize;
            let val = (self.0 >> offs) & 0x07;
            super::vals::SampleTime::from_bits(val as u8)
        }
        #[doc = "Sampling time selection 1 These bits are written by software to select the sampling time that applies to all channels. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_smp(&mut self, n: usize, val: super::vals::SampleTime) {
            assert!(n < 2usize);
            let offs = 0usize + n * 4usize;
            self.0 = (self.0 & !(0x07 << offs)) | (((val.to_bits() as u32) & 0x07) << offs);
        }
        #[doc = "Channel-x sampling time selection These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub const fn smpsel(&self, n: usize) -> super::vals::Smpsel {
            assert!(n < 14usize);
            let offs = 8usize + n * 1usize;
            let val = (self.0 >> offs) & 0x01;
            super::vals::Smpsel::from_bits(val as u8)
        }
        #[doc = "Channel-x sampling time selection These bits are written by software to define which sampling time is used. Note: The software is allowed to write this bit only when ADSTART is cleared to 0 by writing ADSTP to 1 (which ensures that no conversion is ongoing)."]
        #[inline(always)]
        pub fn set_smpsel(&mut self, n: usize, val: super::vals::Smpsel) {
            assert!(n < 14usize);
            let offs = 8usize + n * 1usize;
            self.0 = (self.0 & !(0x01 << offs)) | (((val.to_bits() as u32) & 0x01) << offs);
        }
    }
    impl Default for Smpr {
        #[inline(always)]
        fn default() -> Smpr {
            Smpr(0)
        }
    }
    impl core::fmt::Debug for Smpr {
        fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
            f.debug_struct("Smpr")
                .field("smp[0]", &self.smp(0usize))
                .field("smp[1]", &self.smp(1usize))
                .field("smpsel[0]", &self.smpsel(0usize))
                .field("smpsel[1]", &self.smpsel(1usize))
                .field("smpsel[2]", &self.smpsel(2usize))
                .field("smpsel[3]", &self.smpsel(3usize))
                .field("smpsel[4]", &self.smpsel(4usize))
                .field("smpsel[5]", &self.smpsel(5usize))
                .field("smpsel[6]", &self.smpsel(6usize))
                .field("smpsel[7]", &self.smpsel(7usize))
                .field("smpsel[8]", &self.smpsel(8usize))
                .field("smpsel[9]", &self.smpsel(9usize))
                .field("smpsel[10]", &self.smpsel(10usize))
                .field("smpsel[11]", &self.smpsel(11usize))
                .field("smpsel[12]", &self.smpsel(12usize))
                .field("smpsel[13]", &self.smpsel(13usize))
                .finish()
        }
    }
    #[cfg(feature = "defmt")]
    impl defmt::Format for Smpr {
        fn format(&self, f: defmt::Formatter) {
            defmt :: write ! (f , "Smpr {{ smp[0]: {:?}, smp[1]: {:?}, smpsel[0]: {:?}, smpsel[1]: {:?}, smpsel[2]: {:?}, smpsel[3]: {:?}, smpsel[4]: {:?}, smpsel[5]: {:?}, smpsel[6]: {:?}, smpsel[7]: {:?}, smpsel[8]: {:?}, smpsel[9]: {:?}, smpsel[10]: {:?}, smpsel[11]: {:?}, smpsel[12]: {:?}, smpsel[13]: {:?} }}" , self . smp (0usize) , self . smp (1usize) , self . smpsel (0usize) , self . smpsel (1usize) , self . smpsel (2usize) , self . smpsel (3usize) , self . smpsel (4usize) , self . smpsel (5usize) , self . smpsel (6usize) , self . smpsel (7usize) , self . smpsel (8usize) , self . smpsel (9usize) , self . smpsel (10usize) , self . smpsel (11usize) , self . smpsel (12usize) , self . smpsel (13usize))
        }
    }
}
pub mod vals {
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Align {
        #[doc = "Right alignment."]
        RIGHT = 0x0,
        #[doc = "Left alignment."]
        LEFT = 0x01,
    }
    impl Align {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Align {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Align {
        #[inline(always)]
        fn from(val: u8) -> Align {
            Align::from_bits(val)
        }
    }
    impl From<Align> for u8 {
        #[inline(always)]
        fn from(val: Align) -> u8 {
            Align::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Awd1sgl {
        #[doc = "Analog watchdog 1 enabled on all channels."]
        ALL_CHANNELS = 0x0,
        #[doc = "Analog watchdog 1 enabled on a single channel."]
        SINGLE_CHANNEL = 0x01,
    }
    impl Awd1sgl {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Awd1sgl {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Awd1sgl {
        #[inline(always)]
        fn from(val: u8) -> Awd1sgl {
            Awd1sgl::from_bits(val)
        }
    }
    impl From<Awd1sgl> for u8 {
        #[inline(always)]
        fn from(val: Awd1sgl) -> u8 {
            Awd1sgl::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Chselrmod {
        #[doc = "Each bit of the CHSELR register enables an input."]
        ENABLE_INPUT = 0x0,
        #[doc = "CHSELR register is able to sequence up to 8 channels."]
        SEQUENCE_EIGHT_CHANNELS = 0x01,
    }
    impl Chselrmod {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Chselrmod {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Chselrmod {
        #[inline(always)]
        fn from(val: u8) -> Chselrmod {
            Chselrmod::from_bits(val)
        }
    }
    impl From<Chselrmod> for u8 {
        #[inline(always)]
        fn from(val: Chselrmod) -> u8 {
            Chselrmod::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Cont {
        #[doc = "Single conversion mode."]
        SINGLE = 0x0,
        #[doc = "Continuous conversion mode."]
        CONTINUOUS = 0x01,
    }
    impl Cont {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Cont {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Cont {
        #[inline(always)]
        fn from(val: u8) -> Cont {
            Cont::from_bits(val)
        }
    }
    impl From<Cont> for u8 {
        #[inline(always)]
        fn from(val: Cont) -> u8 {
            Cont::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Dmacfg {
        #[doc = "DMA One Shot mode selected."]
        ONE_SHOT = 0x0,
        #[doc = "DMA Circular mode selected."]
        CIRCULAR = 0x01,
    }
    impl Dmacfg {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Dmacfg {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Dmacfg {
        #[inline(always)]
        fn from(val: u8) -> Dmacfg {
            Dmacfg::from_bits(val)
        }
    }
    impl From<Dmacfg> for u8 {
        #[inline(always)]
        fn from(val: Dmacfg) -> u8 {
            Dmacfg::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Exten {
        #[doc = "Trigger detection disabled"]
        DISABLED = 0x0,
        #[doc = "Trigger detection on the rising edge"]
        RISING_EDGE = 0x01,
        #[doc = "Trigger detection on the falling edge"]
        FALLING_EDGE = 0x02,
        #[doc = "Trigger detection on both the rising and falling edges"]
        BOTH_EDGES = 0x03,
    }
    impl Exten {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Exten {
            unsafe { core::mem::transmute(val & 0x03) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Exten {
        #[inline(always)]
        fn from(val: u8) -> Exten {
            Exten::from_bits(val)
        }
    }
    impl From<Exten> for u8 {
        #[inline(always)]
        fn from(val: Exten) -> u8 {
            Exten::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Extsel {
        #[doc = "adc_trg0."]
        TRG0 = 0x0,
        #[doc = "adc_trg1."]
        TRG1 = 0x01,
        #[doc = "adc_trg2."]
        TRG2 = 0x02,
        #[doc = "adc_trg3."]
        TRG3 = 0x03,
        #[doc = "adc_trg4."]
        TRG4 = 0x04,
        #[doc = "adc_trg5."]
        TRG5 = 0x05,
        #[doc = "adc_trg6."]
        TRG6 = 0x06,
        #[doc = "adc_trg7."]
        TRG7 = 0x07,
    }
    impl Extsel {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Extsel {
            unsafe { core::mem::transmute(val & 0x07) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Extsel {
        #[inline(always)]
        fn from(val: u8) -> Extsel {
            Extsel::from_bits(val)
        }
    }
    impl From<Extsel> for u8 {
        #[inline(always)]
        fn from(val: Extsel) -> u8 {
            Extsel::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum OversamplingRatio {
        #[doc = "Oversample 2 times"]
        OVERSAMPLE2X = 0x0,
        #[doc = "Oversample 4 times"]
        OVERSAMPLE4X = 0x01,
        #[doc = "Oversample 8 times"]
        OVERSAMPLE8X = 0x02,
        #[doc = "Oversample 16 times"]
        OVERSAMPLE16X = 0x03,
        #[doc = "Oversample 32 times"]
        OVERSAMPLE32X = 0x04,
        #[doc = "Oversample 64 times"]
        OVERSAMPLE64X = 0x05,
        #[doc = "Oversample 128 times"]
        OVERSAMPLE128X = 0x06,
        #[doc = "Oversample 256 times"]
        OVERSAMPLE256X = 0x07,
    }
    impl OversamplingRatio {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> OversamplingRatio {
            unsafe { core::mem::transmute(val & 0x07) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for OversamplingRatio {
        #[inline(always)]
        fn from(val: u8) -> OversamplingRatio {
            OversamplingRatio::from_bits(val)
        }
    }
    impl From<OversamplingRatio> for u8 {
        #[inline(always)]
        fn from(val: OversamplingRatio) -> u8 {
            OversamplingRatio::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Ovrmod {
        #[doc = "DR register is preserved with the old data when an overrun is detected."]
        PRESERVE = 0x0,
        #[doc = "DR register is overwritten with the last conversion result when an overrun is detected."]
        OVERWRITE = 0x01,
    }
    impl Ovrmod {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Ovrmod {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Ovrmod {
        #[inline(always)]
        fn from(val: u8) -> Ovrmod {
            Ovrmod::from_bits(val)
        }
    }
    impl From<Ovrmod> for u8 {
        #[inline(always)]
        fn from(val: Ovrmod) -> u8 {
            Ovrmod::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Ovss {
        #[doc = "No shift."]
        SHIFT0 = 0x0,
        #[doc = "Shift 1-bit."]
        SHIFT1 = 0x01,
        #[doc = "Shift 2-bits."]
        SHIFT2 = 0x02,
        #[doc = "Shift 3-bits."]
        SHIFT3 = 0x03,
        #[doc = "Shift 4-bits."]
        SHIFT4 = 0x04,
        #[doc = "Shift 5-bits."]
        SHIFT5 = 0x05,
        #[doc = "Shift 6-bits."]
        SHIFT6 = 0x06,
        #[doc = "Shift 7-bits."]
        SHIFT7 = 0x07,
        #[doc = "Shift 8-bits."]
        SHIFT8 = 0x08,
        _RESERVED_9 = 0x09,
        _RESERVED_a = 0x0a,
        _RESERVED_b = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
    }
    impl Ovss {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Ovss {
            unsafe { core::mem::transmute(val & 0x0f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Ovss {
        #[inline(always)]
        fn from(val: u8) -> Ovss {
            Ovss::from_bits(val)
        }
    }
    impl From<Ovss> for u8 {
        #[inline(always)]
        fn from(val: Ovss) -> u8 {
            Ovss::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Presc {
        #[doc = "input ADC clock not divided."]
        DIV1 = 0x0,
        #[doc = "input ADC clock divided by 2."]
        DIV2 = 0x01,
        #[doc = "input ADC clock divided by 4."]
        DIV4 = 0x02,
        #[doc = "input ADC clock divided by 6."]
        DIV6 = 0x03,
        #[doc = "input ADC clock divided by 8."]
        DIV8 = 0x04,
        #[doc = "input ADC clock divided by 10."]
        DIV10 = 0x05,
        #[doc = "input ADC clock divided by 12."]
        DIV12 = 0x06,
        #[doc = "input ADC clock divided by 16."]
        DIV16 = 0x07,
        #[doc = "input ADC clock divided by 32."]
        DIV32 = 0x08,
        #[doc = "input ADC clock divided by 64."]
        DIV64 = 0x09,
        #[doc = "input ADC clock divided by 128."]
        DIV128 = 0x0a,
        #[doc = "input ADC clock divided by 256."]
        DIV256 = 0x0b,
        _RESERVED_c = 0x0c,
        _RESERVED_d = 0x0d,
        _RESERVED_e = 0x0e,
        _RESERVED_f = 0x0f,
    }
    impl Presc {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Presc {
            unsafe { core::mem::transmute(val & 0x0f) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Presc {
        #[inline(always)]
        fn from(val: u8) -> Presc {
            Presc::from_bits(val)
        }
    }
    impl From<Presc> for u8 {
        #[inline(always)]
        fn from(val: Presc) -> u8 {
            Presc::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Res {
        #[doc = "12-bit resolution"]
        BITS12 = 0x0,
        #[doc = "10-bit resolution"]
        BITS10 = 0x01,
        #[doc = "8-bit resolution"]
        BITS8 = 0x02,
        #[doc = "6-bit resolution"]
        BITS6 = 0x03,
    }
    impl Res {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Res {
            unsafe { core::mem::transmute(val & 0x03) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Res {
        #[inline(always)]
        fn from(val: u8) -> Res {
            Res::from_bits(val)
        }
    }
    impl From<Res> for u8 {
        #[inline(always)]
        fn from(val: Res) -> u8 {
            Res::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum SampleTime {
        #[doc = "1.5 ADC cycles"]
        CYCLES1_5 = 0x0,
        #[doc = "3.5 ADC cycles"]
        CYCLES3_5 = 0x01,
        #[doc = "7.5 ADC cycles"]
        CYCLES7_5 = 0x02,
        #[doc = "12.5 ADC cycles"]
        CYCLES12_5 = 0x03,
        #[doc = "19.5 ADC cycles"]
        CYCLES19_5 = 0x04,
        #[doc = "39.5 ADC cycles"]
        CYCLES39_5 = 0x05,
        #[doc = "79.5 ADC cycles"]
        CYCLES79_5 = 0x06,
        #[doc = "814.5 ADC cycles"]
        CYCLES814_5 = 0x07,
    }
    impl SampleTime {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> SampleTime {
            unsafe { core::mem::transmute(val & 0x07) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for SampleTime {
        #[inline(always)]
        fn from(val: u8) -> SampleTime {
            SampleTime::from_bits(val)
        }
    }
    impl From<SampleTime> for u8 {
        #[inline(always)]
        fn from(val: SampleTime) -> u8 {
            SampleTime::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Scandir {
        #[doc = "Upward scan (from CHSEL0 to CHSEL11)."]
        UPWARDS = 0x0,
        #[doc = "Backward scan (from CHSEL11 to CHSEL0)."]
        BACKWARDS = 0x01,
    }
    impl Scandir {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Scandir {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Scandir {
        #[inline(always)]
        fn from(val: u8) -> Scandir {
            Scandir::from_bits(val)
        }
    }
    impl From<Scandir> for u8 {
        #[inline(always)]
        fn from(val: Scandir) -> u8 {
            Scandir::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Smpsel {
        #[doc = "Sampling time of CHANNELx use the setting of SMP1\\[2:0\\]
register."]
        SMP1 = 0x0,
        #[doc = "Sampling time of CHANNELx use the setting of SMP2\\[2:0\\]
register."]
        SMP2 = 0x01,
    }
    impl Smpsel {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Smpsel {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Smpsel {
        #[inline(always)]
        fn from(val: u8) -> Smpsel {
            Smpsel::from_bits(val)
        }
    }
    impl From<Smpsel> for u8 {
        #[inline(always)]
        fn from(val: Smpsel) -> u8 {
            Smpsel::to_bits(val)
        }
    }
    #[repr(u8)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
    #[cfg_attr(feature = "defmt", derive(defmt::Format))]
    pub enum Tovs {
        #[doc = "All oversampled conversions for a channel are done consecutively after a trigger."]
        ALL_AFTER_TRIGGER = 0x0,
        #[doc = "Each oversampled conversion for a channel needs a trigger."]
        EACH_AFTER_TRIGGER = 0x01,
    }
    impl Tovs {
        #[inline(always)]
        pub const fn from_bits(val: u8) -> Tovs {
            unsafe { core::mem::transmute(val & 0x01) }
        }
        #[inline(always)]
        pub const fn to_bits(self) -> u8 {
            unsafe { core::mem::transmute(self) }
        }
    }
    impl From<u8> for Tovs {
        #[inline(always)]
        fn from(val: u8) -> Tovs {
            Tovs::from_bits(val)
        }
    }
    impl From<Tovs> for u8 {
        #[inline(always)]
        fn from(val: Tovs) -> u8 {
            Tovs::to_bits(val)
        }
    }
}