scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use ndarray::{Array1, Array2};
use std::fs::File;
use std::io::Write;

use scirs2_signal::waveforms;
use scirs2_signal::wiener::{
    iterative_wiener_filter, kalman_wiener_filter, psd_wiener_filter, spectral_subtraction,
    wiener_filter, wiener_filter_2d, wiener_filter_freq, wiener_filter_time, WienerConfig,
};
use std::f64::consts::PI;

#[allow(dead_code)]
fn main() {
    println!("Wiener Filtering Examples");
    println!("------------------------");

    // Create test signals
    println!("\nGenerating test signals...");
    let (clean_signal, noisy_signal) = generate_test_signal();
    let (clean_signal2, noisy_signal2) = generate_nonstationary_signal();
    let (clean_image, noisy_image) = generate_test_image();

    // Benchmark SNR before denoising
    let input_snr = calculate_snr(&clean_signal, &noisy_signal);
    println!("Input SNR: {:.2} dB", input_snr);

    // Standard Wiener filter
    println!("\n1. Basic Wiener filtering...");
    let denoised_basic = wiener_filter(&noisy_signal, None, None).unwrap();
    let basic_snr = calculate_snr(&clean_signal, &denoised_basic);
    println!("   Basic Wiener filter SNR: {:.2} dB", basic_snr);
    save_signals_to_csv(
        "wiener_basic.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_basic,
        None,
    );

    // Frequency domain vs. time domain
    println!("\n2. Comparing frequency and time domain implementations...");

    // Configure filters
    let freq_config = WienerConfig {
        frequency_domain: true,
        ..Default::default()
    };

    let time_config = WienerConfig {
        frequency_domain: false,
        window_size: 21,
        ..Default::default()
    };

    // Apply filters
    let denoised_freq = wiener_filter_freq(&noisy_signal, &freq_config).unwrap();
    let denoised_time = wiener_filter_time(&noisy_signal, &time_config).unwrap();

    // Evaluate performance
    let freq_snr = calculate_snr(&clean_signal, &denoised_freq);
    let time_snr = calculate_snr(&clean_signal, &denoised_time);

    println!("   Frequency domain SNR: {:.2} dB", freq_snr);
    println!("   Time domain SNR: {:.2} dB", time_snr);

    save_signals_to_csv(
        "wiener_freq_vs_time.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_freq,
        Some(&denoised_time),
    );

    // Iterative Wiener filter
    println!("\n3. Iterative Wiener filtering...");

    // Configure iterative filter
    let iter_config = WienerConfig {
        max_iterations: 3,
        ..Default::default()
    };

    // Apply filter
    let denoised_iter = iterative_wiener_filter(&noisy_signal, &iter_config).unwrap();
    let iter_snr = calculate_snr(&clean_signal, &denoised_iter);

    println!("   Iterative Wiener filter SNR: {:.2} dB", iter_snr);
    println!("   Improvement over basic: {:.2} dB", iter_snr - basic_snr);

    save_signals_to_csv(
        "wiener_iterative.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_basic,
        Some(&denoised_iter),
    );

    // Spectral subtraction
    println!("\n4. Spectral subtraction...");

    // Apply with different parameters
    let denoised_spec1 = spectral_subtraction(&noisy_signal, None, Some(1.0), Some(0.01)).unwrap();
    let denoised_spec2 = spectral_subtraction(&noisy_signal, None, Some(2.0), Some(0.001)).unwrap();

    let spec1_snr = calculate_snr(&clean_signal, &denoised_spec1);
    let spec2_snr = calculate_snr(&clean_signal, &denoised_spec2);

    println!("   Spectral subtraction (α=1.0) SNR: {:.2} dB", spec1_snr);
    println!("   Spectral subtraction (α=2.0) SNR: {:.2} dB", spec2_snr);

    save_signals_to_csv(
        "spectral_subtraction.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_spec1,
        Some(&denoised_spec2),
    );

    // PSD-based Wiener filter
    println!("\n5. PSD-based Wiener filtering...");

    // Apply filter
    let denoised_psd = psd_wiener_filter(&noisy_signal, None, None).unwrap();
    let psd_snr = calculate_snr(&clean_signal, &denoised_psd);

    println!("   PSD-based Wiener filter SNR: {:.2} dB", psd_snr);

    save_signals_to_csv(
        "wiener_psd.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_psd,
        None,
    );

    // Non-stationary signal with Kalman-Wiener filter
    println!("\n6. Kalman-Wiener filter for non-stationary signals...");

    // Kalman filter requires process and measurement variances
    let process_var = 0.01; // State model variance
    let measurement_var = 0.5; // Observation variance

    // Apply standard Wiener and Kalman-Wiener filters
    let nonstat_wiener = wiener_filter(&noisy_signal2, None, None).unwrap();
    let nonstat_kalman =
        kalman_wiener_filter(&noisy_signal2, process_var, measurement_var).unwrap();

    // Calculate SNRs
    let nonstat_input_snr = calculate_snr(&clean_signal2, &noisy_signal2);
    let nonstat_wiener_snr = calculate_snr(&clean_signal2, &nonstat_wiener);
    let nonstat_kalman_snr = calculate_snr(&clean_signal2, &nonstat_kalman);

    println!(
        "   Non-stationary signal input SNR: {:.2} dB",
        nonstat_input_snr
    );
    println!(
        "   Standard Wiener filter SNR: {:.2} dB",
        nonstat_wiener_snr
    );
    println!("   Kalman-Wiener filter SNR: {:.2} dB", nonstat_kalman_snr);

    save_signals_to_csv(
        "wiener_nonstationary.csv",
        &clean_signal2,
        &noisy_signal2,
        &nonstat_wiener,
        Some(&nonstat_kalman),
    );

    // 2D image denoising
    println!("\n7. 2D image denoising...");

    // Apply 2D Wiener filter
    let denoised_image = wiener_filter_2d(&noisy_image, None, Some([5, 5])).unwrap();

    // Calculate image SNR
    let image_input_snr = calculate_image_snr(&clean_image, &noisy_image);
    let image_output_snr = calculate_image_snr(&clean_image, &denoised_image);

    println!("   Image input SNR: {:.2} dB", image_input_snr);
    println!("   Image output SNR: {:.2} dB", image_output_snr);
    println!(
        "   Improvement: {:.2} dB",
        image_output_snr - image_input_snr
    );

    save_image_to_csv("wiener_image_clean.csv", &clean_image);
    save_image_to_csv("wiener_image_noisy.csv", &noisy_image);
    save_image_to_csv("wiener_image_denoised.csv", &denoised_image);

    println!("\nDone! Results saved to CSV files for plotting.");
}

/// Generates a test signal with additive noise
#[allow(dead_code)]
fn generate_test_signal() -> (Array1<f64>, Array1<f64>) {
    // Signal parameters
    let n_samples = 1000;
    let sampling_rate = 1000.0;
    let t = Array1::linspace(0.0, (n_samples as f64 - 1.0) / sampling_rate, n_samples);

    // Generate a clean chirp signal
    let clean_signal = Array1::from_vec(
        waveforms::chirp(t.as_slice().unwrap(), 10.0, 1.0, 100.0, "linear", 0.0).unwrap(),
    );

    // Add Gaussian noise
    let noise_level = 0.5;
    let mut rng = rand::rng();
    let mut noisy_signal = clean_signal.clone();

    for i in 0..n_samples {
        noisy_signal[i] += noise_level * rng.random_range(-1.0..1.0);
    }

    (clean_signal..noisy_signal)
}

/// Generates a non-stationary signal with time-varying noise
#[allow(dead_code)]
fn generate_nonstationary_signal() -> (Array1<f64>, Array1<f64>) {
    // Signal parameters
    let n_samples = 1000;
    let sampling_rate = 1000.0;
    let t = Array1::linspace(0.0, (n_samples as f64 - 1.0) / sampling_rate, n_samples);

    // Generate a clean multi-component signal
    let f1 = 10.0;
    let f2 = 40.0;

    let clean_signal = t.mapv(|ti| (2.0 * PI * f1 * ti).sin() + 0.5 * (2.0 * PI * f2 * ti).sin());

    // Add time-varying noise (stronger in the middle)
    let mut rng = rand::rng();
    let mut noisy_signal = clean_signal.clone();

    for i in 0..n_samples {
        // Noise amplitude varies with time (parabolic shape)
        let noise_level = 0.2 + 0.8 * (1.0 - (i as f64 / n_samples as f64 * 2.0 - 1.0).powi(2));

        noisy_signal[i] += noise_level * rng.random_range(-1.0..1.0);
    }

    (clean_signal..noisy_signal)
}

/// Generates a test image with additive noise
#[allow(dead_code)]
fn generate_test_image() -> (Array2<f64>, Array2<f64>) {
    // Image parameters
    let height = 32;
    let width = 32;

    // Create a clean test image (a simple pattern)
    let mut clean_image = Array2::zeros((height, width));

    // Create a pattern with a circle and gradients
    for i in 0..height {
        for j in 0..width {
            // Normalize coordinates to [-1, 1]
            let x = j as f64 / width as f64 * 2.0 - 1.0;
            let y = i as f64 / height as f64 * 2.0 - 1.0;

            // Circle pattern
            let distance = (x.powi(2) + y.powi(2)).sqrt();
            if distance < 0.5 {
                clean_image[[i, j]] = 1.0;
            }

            // Add gradient
            clean_image[[i, j]] += 0.4 * x;
        }
    }

    // Normalize to [0, 1] range
    let min_val = clean_image.iter().fold(f64::INFINITY, |a, &b| a.min(b));
    let max_val = clean_image.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
    if (max_val - min_val).abs() > 1e-10 {
        clean_image.mapv_inplace(|x| (x - min_val) / (max_val - min_val));
    }

    // Add Gaussian noise
    let noise_level = 0.2;
    let mut rng = rand::rng();
    let mut noisy_image = clean_image.clone();

    for i in 0..height {
        for j in 0..width {
            noisy_image[[i, j]] += noise_level * rng.random_range(-1.0..1.0);
        }
    }

    // Clip to [0..1] range
    noisy_image.mapv_inplace(|x| x.clamp(0.0, 1.0));

    (clean_image, noisy_image)
}

/// Calculates the Signal-to-Noise Ratio (SNR) in dB
#[allow(dead_code)]
fn calculate_snr(clean: &Array1<f64>, noisy: &Array1<f64>) -> f64 {
    if clean.len() != noisy.len() {
        return f64::NEG_INFINITY;
    }

    let mut signal_power = 0.0;
    let mut noise_power = 0.0;

    for i in 0.._clean.len() {
        signal_power += clean[i].powi(2);
        noise_power += (_clean[i] - noisy[i]).powi(2);
    }

    if noise_power < 1e-10 {
        return f64::INFINITY;
    }

    10.0 * (signal_power / noise_power).log10()
}

/// Calculates the SNR for images
#[allow(dead_code)]
fn calculate_image_snr(clean: &Array2<f64>, noisy: &Array2<f64>) -> f64 {
    if clean.dim() != noisy.dim() {
        return f64::NEG_INFINITY;
    }

    let mut signal_power = 0.0;
    let mut noise_power = 0.0;

    for i in 0.._clean.dim().0 {
        for j in 0.._clean.dim().1 {
            signal_power += clean[[i, j]].powi(2);
            noise_power += (_clean[[i, j]] - noisy[[i, j]]).powi(2);
        }
    }

    if noise_power < 1e-10 {
        return f64::INFINITY;
    }

    10.0 * (signal_power / noise_power).log10()
}

/// Saves signals to a CSV file for plotting
#[allow(dead_code)]
fn save_signals_to_csv(
    filename: &str,
    clean: &Array1<f64>,
    noisy: &Array1<f64>,
    denoised1: &Array1<f64>,
    denoised2: Option<&Array1<f64>>,
) {
    let mut file = File::create(filename).expect("Failed to create file");

    // Write header
    if denoised2.is_some() {
        writeln!(file, "sample,clean,noisy,denoised1,denoised2").expect("Failed to write header");
    } else {
        writeln!(file, "sample,clean,noisy,denoised").expect("Failed to write header");
    }

    // Write data
    for i in 0..clean.len() {
        write!(file, "{},{},{},{}", i, clean[i], noisy[i], denoised1[i])
            .expect("Failed to write data");

        if let Some(d2) = denoised2 {
            write!(file, ",{}", d2[i]).expect("Failed to write data");
        }

        writeln!(file).expect("Failed to write data");
    }
}

/// Saves an image to CSV for visualization
#[allow(dead_code)]
fn save_image_to_csv(filename: &str, image: &Array2<f64>) {
    let mut file = File::create(_filename).expect("Failed to create file");

    // Write header
    let (height, width) = image.dim();

    for j in 0..width {
        if j == 0 {
            write!(file, "row").expect("Failed to write header");
        }
        write!(file, ",{}", j).expect("Failed to write header");
    }
    writeln!(file).expect("Failed to write header");

    // Write data
    for i in 0..height {
        write!(file, "{}", i).expect("Failed to write data");

        for j in 0..width {
            write!(file, ",{:.6}", image[[i, j]]).expect("Failed to write data");
        }

        writeln!(file).expect("Failed to write data");
    }
}