scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
use scirs2_core::ndarray::{Array1, Array2, Array3};
use scirs2_core::random::Rng;
use std::fs::File;
use std::io::Write;

use scirs2_signal::median::{
    hybrid_median_filter_2d, median_filter_1d, median_filter_2d, median_filter_color,
    rank_filter_1d, EdgeMode, MedianConfig,
};

#[allow(dead_code)]
fn main() {
    println!("Median Filtering Examples");
    println!("-------------------------");

    // Create test signals and images
    println!("\nGenerating test data...");
    let (clean_signal, noisy_signal) = generate_impulse_signal();
    let (clean_image, noisy_image) = generate_impulse_image();
    let (clean_color_image, noisy_color_image) = generate_color_impulse_image();

    // 1D Signal Median Filtering
    println!("\n1. 1D Signal Median Filtering");

    // Create configurations with different parameters
    let standard_config = MedianConfig::default();

    let adaptive_config = MedianConfig {
        adaptive: true,
        max_kernel_size: 9,
        ..Default::default()
    };

    let center_weighted_config = MedianConfig {
        center_weighted: true,
        center_weight: 3,
        ..Default::default()
    };

    // Apply median filtering with different settings
    let filtered_standard = median_filter_1d(&noisy_signal, 5, &standard_config).unwrap();
    let filtered_adaptive = median_filter_1d(&noisy_signal, 5, &adaptive_config).unwrap();
    let filtered_weighted = median_filter_1d(&noisy_signal, 5, &center_weighted_config).unwrap();

    // Calculate error metrics
    let mse_noisy = calculate_mse(&clean_signal, &noisy_signal);
    let mse_standard = calculate_mse(&clean_signal, &filtered_standard);
    let mse_adaptive = calculate_mse(&clean_signal, &filtered_adaptive);
    let mse_weighted = calculate_mse(&clean_signal, &filtered_weighted);

    println!("   Noisy signal MSE: {:.4}", mse_noisy);
    println!(
        "   Standard median filter MSE: {:.4} (improvement: {:.2}%)",
        mse_standard,
        100.0 * (mse_noisy - mse_standard) / mse_noisy
    );
    println!(
        "   Adaptive median filter MSE: {:.4} (improvement: {:.2}%)",
        mse_adaptive,
        100.0 * (mse_noisy - mse_adaptive) / mse_noisy
    );
    println!(
        "   Center-weighted median filter MSE: {:.4} (improvement: {:.2}%)",
        mse_weighted,
        100.0 * (mse_noisy - mse_weighted) / mse_noisy
    );

    // Save results to CSV for plotting
    save_signal_to_csv(
        "median_1d_results.csv",
        &clean_signal,
        &noisy_signal,
        &filtered_standard,
        Some(&filtered_adaptive),
        Some(&filtered_weighted),
    );
    println!("   Saved results to median_1d_results.csv");

    // 2. Rank Filtering
    println!("\n2. Rank Filtering for 1D Signals");

    // Apply rank filters with different ranks
    let min_filter = rank_filter_1d(&noisy_signal, 5, 0.0, EdgeMode::Reflect).unwrap();
    let median_filter = rank_filter_1d(&noisy_signal, 5, 0.5, EdgeMode::Reflect).unwrap();
    let max_filter = rank_filter_1d(&noisy_signal, 5, 1.0, EdgeMode::Reflect).unwrap();

    // Save rank filter results to CSV
    save_signal_to_csv(
        "rank_filter_results.csv",
        &clean_signal,
        &noisy_signal,
        &min_filter,
        Some(&median_filter),
        Some(&max_filter),
    );
    println!("   Saved rank filter results to rank_filter_results.csv");

    // 3. 2D Image Median Filtering
    println!("\n3. 2D Image Median Filtering");

    // Apply different filters to the noisy image
    let image_standard = median_filter_2d(&noisy_image, 3, &standard_config).unwrap();
    let image_adaptive = median_filter_2d(&noisy_image, 3, &adaptive_config).unwrap();
    let image_weighted = median_filter_2d(&noisy_image, 3, &center_weighted_config).unwrap();
    let image_hybrid = hybrid_median_filter_2d(&noisy_image, 5, &standard_config).unwrap();

    // Calculate image quality metrics
    let image_mse_noisy = calculate_image_mse(&clean_image, &noisy_image);
    let image_mse_standard = calculate_image_mse(&clean_image, &image_standard);
    let image_mse_adaptive = calculate_image_mse(&clean_image, &image_adaptive);
    let image_mse_weighted = calculate_image_mse(&clean_image, &image_weighted);
    let image_mse_hybrid = calculate_image_mse(&clean_image, &image_hybrid);

    println!("   Noisy image MSE: {:.4}", image_mse_noisy);
    println!(
        "   Standard median filter MSE: {:.4} (improvement: {:.2}%)",
        image_mse_standard,
        100.0 * (image_mse_noisy - image_mse_standard) / image_mse_noisy
    );
    println!(
        "   Adaptive median filter MSE: {:.4} (improvement: {:.2}%)",
        image_mse_adaptive,
        100.0 * (image_mse_noisy - image_mse_adaptive) / image_mse_noisy
    );
    println!(
        "   Center-weighted median filter MSE: {:.4} (improvement: {:.2}%)",
        image_mse_weighted,
        100.0 * (image_mse_noisy - image_mse_weighted) / image_mse_noisy
    );
    println!(
        "   Hybrid median filter MSE: {:.4} (improvement: {:.2}%)",
        image_mse_hybrid,
        100.0 * (image_mse_noisy - image_mse_hybrid) / image_mse_noisy
    );

    // Save image results to CSV files
    save_image_to_csv("median_clean_image.csv", &clean_image);
    save_image_to_csv("median_noisy_image.csv", &noisy_image);
    save_image_to_csv("median_standard_image.csv", &image_standard);
    save_image_to_csv("median_adaptive_image.csv", &image_adaptive);
    save_image_to_csv("median_weighted_image.csv", &image_weighted);
    save_image_to_csv("median_hybrid_image.csv", &image_hybrid);

    println!("   Saved image results to CSV files");

    // 4. Color Image Median Filtering
    println!("\n4. Color Image Median Filtering");

    // Apply median filtering to color image
    let color_channel =
        median_filter_color(&noisy_color_image, 3, &standard_config, false).unwrap();
    let color_vector = median_filter_color(&noisy_color_image, 3, &standard_config, true).unwrap();

    // Calculate color image quality metrics
    let color_mse_noisy = calculate_color_mse(&clean_color_image, &noisy_color_image);
    let color_mse_channel = calculate_color_mse(&clean_color_image, &color_channel);
    let color_mse_vector = calculate_color_mse(&clean_color_image, &color_vector);

    println!("   Noisy color image MSE: {:.4}", color_mse_noisy);
    println!(
        "   Channel-by-channel median filter MSE: {:.4} (improvement: {:.2}%)",
        color_mse_channel,
        100.0 * (color_mse_noisy - color_mse_channel) / color_mse_noisy
    );
    println!(
        "   Vector median filter MSE: {:.4} (improvement: {:.2}%)",
        color_mse_vector,
        100.0 * (color_mse_noisy - color_mse_vector) / color_mse_noisy
    );

    // Save color channels to CSV files
    for c in 0..3 {
        let channel_name = match c {
            0 => "red",
            1 => "green",
            2 => "blue",
            _ => "unknown",
        };

        save_image_to_csv(
            &format!("median_color_clean_{}.csv", channel_name),
            &extract_channel(&clean_color_image, c),
        );

        save_image_to_csv(
            &format!("median_color_noisy_{}.csv", channel_name),
            &extract_channel(&noisy_color_image, c),
        );

        save_image_to_csv(
            &format!("median_color_channel_{}.csv", channel_name),
            &extract_channel(&color_channel, c),
        );

        save_image_to_csv(
            &format!("median_color_vector_{}.csv", channel_name),
            &extract_channel(&color_vector, c),
        );
    }

    println!("   Saved color image results to CSV files");

    // 5. Edge Mode Comparison
    println!("\n5. Edge Mode Comparison");

    // Create configurations with different edge modes
    let reflect_config = MedianConfig {
        edge_mode: EdgeMode::Reflect,
        ..Default::default()
    };

    let nearest_config = MedianConfig {
        edge_mode: EdgeMode::Nearest,
        ..Default::default()
    };

    let constant_config = MedianConfig {
        edge_mode: EdgeMode::Constant(0.0),
        ..Default::default()
    };

    let wrap_config = MedianConfig {
        edge_mode: EdgeMode::Wrap,
        ..Default::default()
    };

    // Apply median filtering with different edge modes
    let edge_reflect = median_filter_2d(&noisy_image, 3, &reflect_config).unwrap();
    let edge_nearest = median_filter_2d(&noisy_image, 3, &nearest_config).unwrap();
    let edge_constant = median_filter_2d(&noisy_image, 3, &constant_config).unwrap();
    let edge_wrap = median_filter_2d(&noisy_image, 3, &wrap_config).unwrap();

    // Save edge mode results to CSV files
    save_image_to_csv("median_edge_reflect.csv", &edge_reflect);
    save_image_to_csv("median_edge_nearest.csv", &edge_nearest);
    save_image_to_csv("median_edge_constant.csv", &edge_constant);
    save_image_to_csv("median_edge_wrap.csv", &edge_wrap);

    println!("   Saved edge mode comparison results to CSV files");

    // 6. Kernel Size Comparison
    println!("\n6. Kernel Size Comparison");

    // Apply median filtering with different kernel sizes
    let kernel_sizes = [3, 5, 7, 9];

    for &size in &kernel_sizes {
        let filtered = median_filter_2d(&noisy_image, size, &standard_config).unwrap();
        let mse = calculate_image_mse(&clean_image, &filtered);

        println!("   Kernel size {}: MSE = {:.4}", size, mse);
        save_image_to_csv(&format!("median_kernel_{}.csv", size), &filtered);
    }

    println!("   Saved kernel size comparison results to CSV files");

    println!("\nDone! All results saved to CSV files for visualization.");
}

/// Generates a test signal with impulse noise
#[allow(dead_code)]
fn generate_impulse_signal() -> (Array1<f64>, Array1<f64>) {
    // Create clean signal with step edges and smooth regions
    let n = 500;
    let mut clean_signal = Array1::zeros(n);

    // Create piecewise signal with some smooth regions
    for i in 0..n {
        if i < 100 {
            clean_signal[i] = 1.0;
        } else if i < 200 {
            clean_signal[i] = 2.0;
        } else if i < 300 {
            // Ramp
            clean_signal[i] = 2.0 + (i - 300) as f64 / 100.0 * 1.0;
        } else if i < 400 {
            // Sine wave
            clean_signal[i] = 3.0 + (i - 350) as f64 / 50.0 * std::f64::consts::PI;
            clean_signal[i] = 3.0 + (clean_signal[i].sin() + 1.0) / 2.0;
        } else {
            clean_signal[i] = 4.0;
        }
    }

    // Add impulse noise (salt and pepper)
    let mut rng = scirs2_core::random::rng();
    let mut noisy_signal = clean_signal.clone();

    // Salt and pepper rate
    let impulse_rate = 0.1;

    for i in 0..n {
        // Random value between 0 and 1
        let r = rng.random_range(0.0..1.0);

        if r < impulse_rate {
            // Add high impulse (salt)
            noisy_signal[i] = 10.0;
        } else if r < 2.0 * impulse_rate {
            // Add low impulse (pepper)
            noisy_signal[i] = -2.0;
        }
    }

    (clean_signal, noisy_signal)
}

/// Generates a test image with impulse noise
#[allow(dead_code)]
fn generate_impulse_image() -> (Array2<f64>, Array2<f64>) {
    // Create a test image with geometric shapes
    let size = 64;
    let mut clean_image = Array2::zeros((size, size));

    // Add shapes
    for i in 0..size {
        for j in 0..size {
            // Normalize coordinates to [-1, 1]
            let x = j as f64 / size as f64 * 2.0 - 1.0;
            let y = i as f64 / size as f64 * 2.0 - 1.0;

            // Circle
            if (x * x + y * y) < 0.4 {
                clean_image[[i, j]] = 1.0;
            }

            // Square
            if x.abs() < 0.3 && y.abs() < 0.3 {
                clean_image[[i, j]] = 0.7;
            }

            // Cross
            if (x.abs() < 0.1 || y.abs() < 0.1) && x.abs() < 0.7 && y.abs() < 0.7 {
                clean_image[[i, j]] = 0.5;
            }

            // Add gradient in background
            if clean_image[[i, j]] < 0.01 {
                clean_image[[i, j]] = 0.3 * (x + y + 2.0) / 4.0;
            }
        }
    }

    // Add impulse noise (salt and pepper)
    let mut rng = scirs2_core::random::rng();
    let mut noisy_image = clean_image.clone();

    // Salt and pepper rate
    let impulse_rate = 0.1;

    for i in 0..size {
        for j in 0..size {
            // Random value between 0 and 1
            let r = rng.random_range(0.0..1.0);

            if r < impulse_rate {
                // Add high impulse (salt)
                noisy_image[[i, j]] = 1.0;
            } else if r < 2.0 * impulse_rate {
                // Add low impulse (pepper)
                noisy_image[[i, j]] = 0.0;
            }
        }
    }

    (clean_image, noisy_image)
}

/// Generates a test color image with impulse noise
#[allow(dead_code)]
fn generate_color_impulse_image() -> (Array3<f64>, Array3<f64>) {
    // Create a color image with RGB channels
    let size = 64;
    let mut clean_image = Array3::zeros((size, size, 3));

    // Add color patterns
    for i in 0..size {
        for j in 0..size {
            // Normalize coordinates to [-1, 1]
            let x = j as f64 / size as f64 * 2.0 - 1.0;
            let y = i as f64 / size as f64 * 2.0 - 1.0;

            // Red channel
            if (x * x + y * y) < 0.4 {
                clean_image[[i, j, 0]] = 0.9;
                clean_image[[i, j, 1]] = 0.2;
                clean_image[[i, j, 2]] = 0.2;
            }

            // Green channel
            if x.abs() < 0.3 && y.abs() < 0.3 {
                clean_image[[i, j, 0]] = 0.2;
                clean_image[[i, j, 1]] = 0.8;
                clean_image[[i, j, 2]] = 0.2;
            }

            // Blue channel
            if (x.abs() < 0.1 || y.abs() < 0.1) && x.abs() < 0.7 && y.abs() < 0.7 {
                clean_image[[i, j, 0]] = 0.3;
                clean_image[[i, j, 1]] = 0.3;
                clean_image[[i, j, 2]] = 0.9;
            }

            // Add gradient in background
            if clean_image[[i, j, 0]] < 0.01
                && clean_image[[i, j, 1]] < 0.01
                && clean_image[[i, j, 2]] < 0.01
            {
                clean_image[[i, j, 0]] = 0.3 * (x + 1.0) / 2.0;
                clean_image[[i, j, 1]] = 0.3 * (y + 1.0) / 2.0;
                clean_image[[i, j, 2]] = 0.3 * ((1.0 - x) + 1.0) / 2.0;
            }
        }
    }

    // Add impulse noise (salt and pepper)
    let mut rng = scirs2_core::random::rng();
    let mut noisy_image = clean_image.clone();

    // Salt and pepper rate
    let impulse_rate = 0.1;

    for i in 0..size {
        for j in 0..size {
            // Random value between 0 and 1
            let r = rng.random_range(0.0..1.0);

            if r < impulse_rate {
                // Add high impulse (salt) to a random channel
                let channel = rng.random_range(0..3);
                noisy_image[[i, j, channel]] = 1.0;
            } else if r < 2.0 * impulse_rate {
                // Add low impulse (pepper) to a random channel
                let channel = rng.random_range(0..3);
                noisy_image[[i, j, channel]] = 0.0;
            }
        }
    }

    (clean_image, noisy_image)
}

/// Helper function to extract a channel from a color image
#[allow(dead_code)]
fn extract_channel(image: &Array3<f64>, channel: usize) -> Array2<f64> {
    let (height, width, _) = image.dim();
    let mut result = Array2::zeros((height, width));

    for i in 0..height {
        for j in 0..width {
            result[[i, j]] = image[[i, j, channel]];
        }
    }

    result
}

/// Calculates Mean Squared Error (MSE) between two signals
#[allow(dead_code)]
fn calculate_mse(signal1: &Array1<f64>, signal2: &Array1<f64>) -> f64 {
    if signal1.len() != signal2.len() {
        return f64::INFINITY;
    }

    let mut sum_squared_diff = 0.0;

    for i in 0..signal1.len() {
        let diff = signal1[i] - signal2[i];
        sum_squared_diff += diff * diff;
    }

    sum_squared_diff / signal1.len() as f64
}

/// Calculates Mean Squared Error (MSE) between two images
#[allow(dead_code)]
fn calculate_image_mse(image1: &Array2<f64>, image2: &Array2<f64>) -> f64 {
    if image1.dim() != image2.dim() {
        return f64::INFINITY;
    }

    let (height, width) = image1.dim();
    let mut sum_squared_diff = 0.0;

    for i in 0..height {
        for j in 0..width {
            let diff = image1[[i, j]] - image2[[i, j]];
            sum_squared_diff += diff * diff;
        }
    }

    sum_squared_diff / (height * width) as f64
}

/// Calculates Mean Squared Error (MSE) between two color images
#[allow(dead_code)]
fn calculate_color_mse(image1: &Array3<f64>, image2: &Array3<f64>) -> f64 {
    if image1.dim() != image2.dim() {
        return f64::INFINITY;
    }

    let (height, width, channels) = image1.dim();
    let mut sum_squared_diff = 0.0;

    for i in 0..height {
        for j in 0..width {
            for c in 0..channels {
                let diff = image1[[i, j, c]] - image2[[i, j, c]];
                sum_squared_diff += diff * diff;
            }
        }
    }

    sum_squared_diff / (height * width * channels) as f64
}

/// Saves 1D signals to a CSV file for plotting
#[allow(dead_code)]
fn save_signal_to_csv(
    filename: &str,
    clean: &Array1<f64>,
    noisy: &Array1<f64>,
    filtered1: &Array1<f64>,
    filtered2: Option<&Array1<f64>>,
    filtered3: Option<&Array1<f64>>,
) {
    let mut file = File::create(filename).expect("Failed to create file");

    // Write header
    if filtered3.is_some() {
        writeln!(file, "index,clean,noisy,standard,adaptive,weighted")
            .expect("Failed to write header");
    } else if filtered2.is_some() {
        writeln!(file, "index,clean,noisy,min,median,max").expect("Failed to write header");
    } else {
        writeln!(file, "index,clean,noisy,filtered").expect("Failed to write header");
    }

    // Write data
    for i in 0..clean.len() {
        write!(file, "{},{},{},{}", i, clean[i], noisy[i], filtered1[i])
            .expect("Failed to write data");

        if let Some(f2) = filtered2 {
            write!(file, ",{}", f2[i]).expect("Failed to write data");
        }

        if let Some(f3) = filtered3 {
            write!(file, ",{}", f3[i]).expect("Failed to write data");
        }

        writeln!(file).expect("Failed to write data");
    }
}

/// Saves a 2D image to a CSV file for visualization
#[allow(dead_code)]
fn save_image_to_csv(filename: &str, image: &Array2<f64>) {
    let mut file = File::create(filename).expect("Failed to create file");

    let (height, width) = image.dim();

    // Write data in CSV format suitable for heatmap visualization
    for i in 0..height {
        for j in 0..width {
            if j > 0 {
                write!(file, ",").expect("Failed to write separator");
            }
            write!(file, "{:.6}", image[[i, j]]).expect("Failed to write data");
        }
        writeln!(file).expect("Failed to write newline");
    }
}