scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/// Example demonstrating sparse signal recovery techniques
use ndarray::{Array1, Array2};
use rand::{seq::SliceRandom, Rng};
use scirs2_linalg::vector_norm;
use scirs2_signal::sparse::{
    compressed_sensing_recover, image_inpainting, measure_sparsity, random_sensing_matrix,
    recover_missing_samples, sparse_denoise, SparseRecoveryConfig, SparseRecoveryMethod,
    SparseTransform,
};
use std::f64::consts::PI;

#[allow(dead_code)]
fn main() {
    println!("# Sparse Signal Recovery Examples");

    // Example 1: Basic Compressed Sensing
    println!("\n## 1. Basic Compressed Sensing Recovery");
    basic_compressed_sensing_example();

    // Example 2: Missing Data Recovery
    println!("\n## 2. Signal Recovery with Missing Samples");
    missing_samples_recovery_example();

    // Example 3: Sparse Signal Denoising
    println!("\n## 3. Sparse Signal Denoising");
    sparse_denoising_example();

    // Example 4: Method Comparison
    println!("\n## 4. Comparing Different Recovery Methods");
    compare_recovery_methods();

    // Example 5: Image Inpainting Demo
    println!("\n## 5. Image Inpainting Example");
    image_inpainting_example();
}

/// Basic compressed sensing recovery example
#[allow(dead_code)]
fn basic_compressed_sensing_example() {
    // Create a sparse signal
    let n = 100; // Signal dimension
    let k = 5; // Sparsity level (number of non-zero entries)

    let mut rng = rand::rng();

    // Generate random sparse signal
    let mut original_signal = Array1::zeros(n);
    let mut indices: Vec<usize> = (0..n).collect();
    indices.shuffle(&mut rng);
    indices.truncate(k);

    for &idx in &indices {
        // Random non-zero values between -10 and 10
        original_signal[idx] = 20.0 * rng.random::<f64>() - 10.0;
    }

    // Number of measurements
    let m = 30; // m < n (compressed sensing)

    // Create sensing matrix
    let phi = random_sensing_matrix(m, n, Some(42));

    // Generate measurements
    let y = phi.dot(&original_signal);

    // Add a small amount of noise
    let noise_level = 0.01;
    let noisy_y = y
        .clone()
        .mapv(|v| v + noise_level * (2.0 * rng.random::<f64>() - 1.0));

    // Sparse recovery configuration
    let config = SparseRecoveryConfig {
        sparsity: Some(k),
        max_iterations: 200,
        convergence_threshold: 1e-6,
        ..Default::default()
    };

    // Recover signal using OMP
    let recovered_signal =
        compressed_sensing_recover(&noisy_y, &phi, SparseRecoveryMethod::OMP, &config).unwrap();

    // Calculate recovery error
    let diff = &original_signal - &recovered_signal;
    let recovery_error =
        vector_norm(&diff.view(), 2).unwrap() / vector_norm(&original_signal.view(), 2).unwrap();

    println!(
        "Original signal sparsity: {:.3}",
        measure_sparsity(&original_signal, 1e-6).unwrap()
    );
    println!(
        "Recovered signal sparsity: {:.3}",
        measure_sparsity(&recovered_signal, 1e-6).unwrap()
    );
    println!("Relative recovery error: {:.6}", recovery_error);

    // Print some elements for comparison
    println!("\nOriginal vs Recovered (first 10 elements):");
    for i in 0..10 {
        println!(
            "{:2}: {:10.5} vs {:10.5}",
            i, original_signal[i], recovered_signal[i]
        );
    }
}

/// Example of recovering signals with missing samples
#[allow(dead_code)]
fn missing_samples_recovery_example() {
    // Create a sparse signal in frequency domain
    let n = 128;
    let mut rng = rand::rng();

    // Generate a signal with a few frequency components
    let mut signal = Array1::zeros(n);
    for i in 0..n {
        let t = i as f64 / n as f64;
        signal[i] = 3.0 * (2.0 * std::f64::consts::PI * 5.0 * t).sin()
            + 2.0 * (2.0 * std::f64::consts::PI * 10.0 * t).sin()
            + 1.0 * (2.0 * std::f64::consts::PI * 20.0 * t).sin();
    }

    // Create a signal with missing samples (marked as NaN)
    let missing_ratio = 0.4; // 40% of samples are missing
    let mut observed_signal = signal.clone();

    for i in 0..n {
        if rng.random::<f64>() < missing_ratio {
            observed_signal[i] = f64::NAN;
        }
    }

    // Count missing samples
    let missing_count = observed_signal.iter().filter(|&&x| x.is_nan()).count();
    println!(
        "Signal length: {}, Missing samples: {} ({}%)",
        n,
        missing_count,
        100.0 * missing_count as f64 / n as f64
    );

    // Configure recovery
    let config = SparseRecoveryConfig {
        max_iterations: 200,
        convergence_threshold: 1e-6,
        sparsity: Some(10), // Expected number of significant frequencies
        ..Default::default()
    };

    // Recover signal using OMP
    let recovered_signal =
        recover_missing_samples(&observed_signal, SparseRecoveryMethod::OMP, &config).unwrap();

    // Calculate recovery error on the missing positions only
    let mut error_sum = 0.0;
    let mut count = 0;

    for i in 0..n {
        if observed_signal[i].is_nan() {
            error_sum += (signal[i] - recovered_signal[i]).powi(2);
            count += 1;
        }
    }

    let rmse = (error_sum / count as f64).sqrt();
    println!("RMSE on missing samples: {:.6}", rmse);

    // Print a few samples for comparison
    println!("\nOriginal vs Recovered (first 10 missing samples):");
    let mut shown = 0;
    for i in 0..n {
        if observed_signal[i].is_nan() && shown < 10 {
            println!(
                "{:3}: {:10.5} vs {:10.5}",
                i, signal[i], recovered_signal[i]
            );
            shown += 1;
        }
    }
}

/// Example of sparse signal denoising
#[allow(dead_code)]
fn sparse_denoising_example() {
    // Create a signal that is sparse in the frequency domain
    let n = 128;
    let mut rng = rand::rng();

    // Generate a clean signal with a few frequency components
    let mut clean_signal = Array1::zeros(n);
    for i in 0..n {
        let t = i as f64 / n as f64;
        clean_signal[i] = 4.0 * (2.0 * std::f64::consts::PI * 3.0 * t).sin()
            + 2.0 * (2.0 * std::f64::consts::PI * 7.0 * t).sin();
    }

    // Add noise
    let noise_level = 0.5;
    let noisy_signal = clean_signal
        .clone()
        .mapv(|v| v + noise_level * (2.0 * rng.random::<f64>() - 1.0));

    // Calculate SNR of noisy signal
    let signal_power = clean_signal.mapv(|v| v * v).sum() / n as f64;
    let noise_power = (&clean_signal - &noisy_signal).mapv(|v| v * v).sum() / n as f64;
    let snr_before = 10.0 * (signal_power / noise_power).log10();

    println!("Original signal SNR: {:.2} dB", snr_before);

    // Configure denoising
    let config = SparseRecoveryConfig {
        lambda: 0.1,       // Regularization parameter for L1 methods
        sparsity: Some(5), // Expected number of significant frequencies
        max_iterations: 200,
        convergence_threshold: 1e-6,
        ..Default::default()
    };

    // Apply sparse recovery for denoising
    let denoised_signal = sparse_denoise(
        &noisy_signal,
        SparseTransform::Frequency,
        SparseRecoveryMethod::OMP,
        &config,
    )
    .unwrap();

    // Calculate SNR after denoising
    let noise_power_after = (&clean_signal - &denoised_signal).mapv(|v| v * v).sum() / n as f64;
    let snr_after = 10.0 * (signal_power / noise_power_after).log10();

    println!("Denoised signal SNR: {:.2} dB", snr_after);
    println!("SNR improvement: {:.2} dB", snr_after - snr_before);

    // Calculate RMSE
    let diff_before = &clean_signal - &noisy_signal;
    let diff_after = &clean_signal - &denoised_signal;
    let rmse_before = vector_norm(&diff_before.view(), 2).unwrap() / (n as f64).sqrt();
    let rmse_after = vector_norm(&diff_after.view(), 2).unwrap() / (n as f64).sqrt();

    println!("RMSE before denoising: {:.6}", rmse_before);
    println!("RMSE after denoising: {:.6}", rmse_after);
}

/// Compare different recovery methods
#[allow(dead_code)]
fn compare_recovery_methods() {
    // Create a sparse signal
    let n = 200; // Signal dimension
    let k = 10; // Sparsity level

    let mut rng = rand::rng();

    // Generate random sparse signal
    let mut original_signal = Array1::zeros(n);
    let mut indices: Vec<usize> = (0..n).collect();
    indices.shuffle(&mut rng);
    indices.truncate(k);

    for &idx in &indices {
        original_signal[idx] = 20.0 * rng.random::<f64>() - 10.0;
    }

    // Number of measurements
    let m = 60;

    // Create sensing matrix
    let phi = random_sensing_matrix(m, n, Some(42));

    // Generate measurements
    let y = phi.dot(&original_signal);

    // Add a small amount of noise
    let noise_level = 0.02;
    let noisy_y = y
        .clone()
        .mapv(|v| v + noise_level * (2.0 * rng.random::<f64>() - 1.0));

    // Recovery methods to compare
    let methods = vec![
        SparseRecoveryMethod::OMP,
        SparseRecoveryMethod::MP,
        SparseRecoveryMethod::ISTA,
        SparseRecoveryMethod::FISTA,
        SparseRecoveryMethod::IHT,
        SparseRecoveryMethod::CoSaMP,
        SparseRecoveryMethod::SmoothL0,
    ];

    // Basic configuration
    let config = SparseRecoveryConfig {
        sparsity: Some(k),
        max_iterations: 300,
        convergence_threshold: 1e-6,
        lambda: 0.1, // For L1 methods
        ..Default::default()
    };

    println!("\nMethod Comparison (m={}, n={}, k={}):", m, n, k);
    println!("| Method | Error | Time (ms) | Sparsity |");
    println!("|--------|-------|-----------|----------|");

    // Run each method and measure performance
    for method in methods {
        let start_time = std::time::Instant::now();

        let recovered_signal = compressed_sensing_recover(&noisy_y, &phi, method, &config).unwrap();

        let elapsed = start_time.elapsed().as_millis();

        // Calculate recovery error
        let diff = &original_signal - &recovered_signal;
        let recovery_error = vector_norm(&diff.view(), 2).unwrap()
            / vector_norm(&original_signal.view(), 2).unwrap();

        // Measure output sparsity
        let sparsity = measure_sparsity(&recovered_signal, 1e-6).unwrap();

        println!(
            "| {:?} | {:.6} | {:5} | {:.6} |",
            method, recovery_error, elapsed, sparsity
        );
    }
}

/// Example of image inpainting with sparse recovery
#[allow(dead_code)]
fn image_inpainting_example() {
    // Create a simple test image (a gradient pattern)
    let n_rows = 32;
    let n_cols = 32;

    let mut image = Array2::zeros((n_rows, n_cols));

    // Fill with a pattern
    for i in 0..n_rows {
        for j in 0..n_cols {
            // Create a pattern that will be sparse in frequency domain
            let x = i as f64 / n_rows as f64;
            let y = j as f64 / n_cols as f64;

            image[[i, j]] = 0.5
                + 0.5
                    * (2.0 * std::f64::consts::PI * 3.0 * x).sin()
                    * (2.0 * std::f64::consts::PI * 2.0 * y).cos();
        }
    }

    // Create random missing pixels
    let mut rng = rand::rng();
    let missing_ratio = 0.3; // 30% of pixels are missing

    let mut masked_image = image.clone();

    for i in 0..n_rows {
        for j in 0..n_cols {
            if rng.random::<f64>() < missing_ratio {
                masked_image[[i, j]] = f64::NAN;
            }
        }
    }

    // Count missing pixels
    let missing_count = masked_image.iter().filter(|&&x| x.is_nan()).count();
    println!(
        "Image size: {}x{}, Missing pixels: {} ({}%)",
        n_rows,
        n_cols,
        missing_count,
        100.0 * missing_count as f64 / (n_rows * n_cols) as f64
    );

    // Configure inpainting
    let config = SparseRecoveryConfig {
        sparsity: Some(20), // Expected sparsity in frequency domain
        max_iterations: 200,
        convergence_threshold: 1e-6,
        ..Default::default()
    };

    // Perform inpainting using 8x8 patches
    let inpainted_image = image_inpainting(
        &masked_image,
        8, // Patch size
        SparseRecoveryMethod::OMP,
        &config,
    )
    .unwrap();

    // Calculate error on missing pixels
    let mut error_sum = 0.0;
    let mut count = 0;

    for i in 0..n_rows {
        for j in 0..n_cols {
            if masked_image[[i, j]].is_nan() {
                error_sum += (image[[i, j]] - inpainted_image[[i, j]]).powi(2);
                count += 1;
            }
        }
    }

    let rmse = (error_sum / count as f64).sqrt();
    println!("RMSE on missing pixels: {:.6}", rmse);

    println!("\nOriginal vs Inpainted (sample of 5 missing pixels):");
    let mut shown = 0;

    for i in 0..n_rows {
        for j in 0..n_cols {
            if masked_image[[i, j]].is_nan() && shown < 5 {
                println!(
                    "[{:2},{:2}]: {:10.5} vs {:10.5}",
                    i,
                    j,
                    image[[i, j]],
                    inpainted_image[[i, j]]
                );
                shown += 1;
            }
        }
    }
}