scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
// Example demonstrating practical applications of image feature extraction
// for classification, segmentation, and analysis

use ndarray::Array2;
use scirs2_signal::image_features::{extract_image_features, ImageFeatureOptions};
use std::collections::HashMap;

#[allow(dead_code)]
fn main() {
    println!("Image Feature Analysis Example");
    println!("=============================\n");

    // Generate synthetic images for analysis
    println!("Generating synthetic image dataset...");
    let (images, labels) = generate_synthetic_dataset(100, 32);
    println!("Generated {} images of size 32x32 pixels", images.len());

    // Extract features from all images
    println!("\nExtracting features from all images...");
    let features = extract_features_from_dataset(&images, &ImageFeatureOptions::default());

    // Analyze feature importance for classification
    println!("\nAnalyzing feature importance for classification...");
    analyze_feature_importance(&features, &labels);

    // Perform image segmentation using texture features
    println!("\nPerforming texture-based segmentation...");
    texture_based_segmentation();

    // Demonstrate region-based feature extraction
    println!("\nDemonstrating region-based feature extraction...");
    region_based_analysis();
}

// Generate a synthetic dataset of images for different classes
#[allow(dead_code)]
fn generate_synthetic_dataset(count: usize, size: usize) -> (Vec<Array2<f64>>, Vec<usize>) {
    let mut images = Vec::with_capacity(_count);
    let mut labels = Vec::with_capacity(_count);

    for i in 0.._count {
        // Generate three different classes of images
        let class = i % 3;

        let mut image = Array2::zeros((size, size));

        match class {
            0 => {
                // Class 0: Gradient texture
                for i in 0..size {
                    for j in 0..size {
                        image[[i, j]] = (i as f64 / size as f64 + j as f64 / size as f64) * 127.5;
                    }
                }

                // Add random noise
                for i in 0..size {
                    for j in 0..size {
                        image[[i, j]] += rand::random::<f64>() * 20.0 - 10.0;
                    }
                }
            }
            1 => {
                // Class 1: Checkerboard pattern
                for i in 0..size {
                    for j in 0..size {
                        if (i / 4 + j / 4) % 2 == 0 {
                            image[[i, j]] = 200.0;
                        } else {
                            image[[i, j]] = 50.0;
                        }
                    }
                }

                // Add random noise
                for i in 0..size {
                    for j in 0..size {
                        image[[i, j]] += rand::random::<f64>() * 20.0 - 10.0;
                    }
                }
            }
            2 => {
                // Class 2: Circular pattern
                let center_x = size / 2;
                let center_y = size / 2;
                let radius = size / 4;

                for i in 0..size {
                    for j in 0..size {
                        let dx = i as isize - center_x as isize;
                        let dy = j as isize - center_y as isize;
                        let distance = ((dx * dx + dy * dy) as f64).sqrt();

                        if distance < radius as f64 {
                            image[[i, j]] = 180.0;
                        } else {
                            image[[i, j]] = 80.0;
                        }
                    }
                }

                // Add random noise
                for i in 0..size {
                    for j in 0..size {
                        image[[i, j]] += rand::random::<f64>() * 20.0 - 10.0;
                    }
                }
            }
            _ => unreachable!(),
        }

        images.push(image);
        labels.push(class);
    }

    (images, labels)
}

// Extract features from a dataset of images
#[allow(dead_code)]
fn extract_features_from_dataset(
    images: &[Array2<f64>],
    options: &ImageFeatureOptions,
) -> Vec<HashMap<String, f64>> {
    let mut all_features = Vec::with_capacity(images.len());

    for (i, image) in images.iter().enumerate() {
        match extract_image_features(image, options) {
            Ok(features) => {
                all_features.push(features);

                // Print progress for every 10% of images processed
                if (i + 1) % (images.len() / 10) == 0 || i + 1 == images.len() {
                    println!(
                        "  Processed {}/{} images ({:.1}%)",
                        i + 1,
                        images.len(),
                        (i + 1) as f64 / images.len() as f64 * 100.0
                    );
                }
            }
            Err(e) => {
                println!("Error extracting features for image {}: {:?}", i, e);
                all_features.push(HashMap::new());
            }
        }
    }

    all_features
}

// Analyze which features are most important for classification
#[allow(dead_code)]
fn analyze_feature_importance(features: &[HashMap<String, f64>], labels: &[usize]) {
    if features.is_empty() || labels.is_empty() || features.len() != labels.len() {
        println!("Invalid data for feature importance analysis");
        return;
    }

    // Get list of all _features
    let all_feature_keys: Vec<String> = if !_features[0].is_empty() {
        features[0].keys().cloned().collect()
    } else {
        println!("No _features found for analysis");
        return;
    };

    // Calculate mean and standard deviation for each feature per class
    let n_classes = *labels.iter().max().unwrap() + 1;

    // For each feature, collect stats by class
    let mut feature_stats: HashMap<String, Vec<(f64, f64)>> = HashMap::new();

    for feature_name in all_feature_keys {
        let mut class_values: Vec<Vec<f64>> = vec![Vec::new(); n_classes];

        // Collect all values per class
        for (idx, label) in labels.iter().enumerate() {
            if let Some(value) = features[idx].get(&feature_name) {
                if value.is_finite() {
                    class_values[*label].push(*value);
                }
            }
        }

        // Calculate mean and stddev for each class
        let mut stats = Vec::with_capacity(n_classes);
        for class_idx in 0..n_classes {
            let values = &class_values[class_idx];
            if values.is_empty() {
                stats.push((0.0, 0.0)); // No data
                continue;
            }

            let sum: f64 = values.iter().sum();
            let mean = sum / values.len() as f64;

            let variance =
                values.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / values.len() as f64;
            let stddev = variance.sqrt();

            stats.push((mean, stddev));
        }

        feature_stats.insert(feature_name, stats);
    }

    // Calculate feature importance based on class separation
    // A simple heuristic: (max difference between class means) / (average of standard deviations)
    let mut importance: Vec<(String, f64)> = Vec::new();

    for (feature_name, stats) in feature_stats {
        let means: Vec<f64> = stats.iter().map(|&(mean_)| mean).collect();
        let stddevs: Vec<f64> = stats.iter().map(|&(_, stddev)| stddev).collect();

        // Find max difference between any two class means
        let mut max_diff = 0.0;
        for i in 0..means.len() {
            for j in i + 1..means.len() {
                let diff = (means[i] - means[j]).abs();
                if diff > max_diff {
                    max_diff = diff;
                }
            }
        }

        // Calculate average standard deviation
        let avg_stddev = if !stddevs.is_empty() {
            stddevs.iter().sum::<f64>() / stddevs.len() as f64
        } else {
            1.0 // Avoid division by zero
        };

        // Calculate importance score
        let score = if avg_stddev > 1e-10 {
            max_diff / avg_stddev
        } else {
            max_diff * 1000.0 // Handle very small stddev
        };

        importance.push((feature_name, score));
    }

    // Sort by importance score
    importance.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));

    // Print the top _features
    println!("\nTop 10 most important _features for classification:");
    println!("{:<30} {:<15}", "Feature", "Importance Score");
    println!("{}", "-".repeat(45));

    for (_i, (feature, score)) in importance.iter().take(10).enumerate() {
        println!("{:<30} {:<15.4}", feature, score);
    }
}

// Demonstrate texture-based image segmentation
#[allow(dead_code)]
fn texture_based_segmentation() {
    // Create a synthetic image with different texture regions
    let size = 64;
    let mut image = Array2::zeros((size, size));

    // Region 1 (top-left): Smooth gradient
    for i in 0..size / 2 {
        for j in 0..size / 2 {
            image[[i, j]] = (i + j) as f64 / (size as f64) * 255.0;
        }
    }

    // Region 2 (top-right): Checkerboard
    for i in 0..size / 2 {
        for j in size / 2..size {
            if (i / 4 + j / 4) % 2 == 0 {
                image[[i, j]] = 220.0;
            } else {
                image[[i, j]] = 70.0;
            }
        }
    }

    // Region 3 (bottom-left): Circular pattern
    let center_x = size / 4 * 3;
    let center_y = size / 4 * 3;
    let _radius = size / 6;

    for i in size / 2..size {
        for j in 0..size / 2 {
            let dx = i as isize - center_x as isize;
            let dy = j as isize - center_y as isize;
            let distance = ((dx * dx + dy * dy) as f64).sqrt();

            if (distance / 4.0).floor() % 2.0 == 0.0 {
                image[[i, j]] = 200.0;
            } else {
                image[[i, j]] = 50.0;
            }
        }
    }

    // Region 4 (bottom-right): Random noise
    for i in size / 2..size {
        for j in size / 2..size {
            image[[i, j]] = rand::random::<f64>() * 200.0 + 25.0;
        }
    }

    // Add some random noise to the entire image
    for i in 0..size {
        for j in 0..size {
            image[[i, j]] += rand::random::<f64>() * 15.0 - 7.5;
            // Clamp values
            image[[i, j]] = image[[i, j]].max(0.0).min(255.0);
        }
    }

    println!("Created synthetic image with 4 texture regions");

    // Perform texture-based segmentation
    println!("Extracting texture features from local patches...");

    // Extract features from local patches
    let patch_size = 8;
    let step = 4;

    let options = ImageFeatureOptions {
        histogram: false,
        edges: false,
        moments: false,
        texture: true,
        haralick: true,
        lbp: true,
        histogram_bins: 8,
        cooccurrence_distance: 1,
        fast_mode: true,
        ..ImageFeatureOptions::default()
    };

    // Create a segmentation map based on texture features
    let mut segmentation = Array2::zeros((size, size));

    // Track feature vectors for each patch center
    let mut patch_features: Vec<((usize, usize), Vec<f64>)> = Vec::new();

    // Extract features for overlapping patches
    for i in 0..size - patch_size + 1 {
        if i % step != 0 {
            continue;
        }

        for j in 0..size - patch_size + 1 {
            if j % step != 0 {
                continue;
            }

            // Extract patch
            let patch =
                Array2::fromshape_fn((patch_size, patch_size), |(pi, pj)| image[[i + pi, j + pj]]);

            // Get features for this patch
            if let Ok(features) = extract_image_features(&patch, &options) {
                // Select key texture features
                let key_features = [
                    "texture_contrast",
                    "texture_energy",
                    "texture_coarseness",
                    "haralick_contrast",
                    "haralick_energy",
                    "haralick_homogeneity",
                    "lbp_energy",
                    "lbp_entropy",
                    "lbp_edges",
                ];

                let feature_vector: Vec<f64> = key_features
                    .iter()
                    .filter_map(|k| features.get(*k).copied())
                    .collect();

                if feature_vector.len() == key_features.len() {
                    // Store center coordinates and feature vector
                    let center = (i + patch_size / 2, j + patch_size / 2);
                    patch_features.push((center, feature_vector));
                }
            }
        }
    }

    println!("Extracted features from {} patches", patch_features.len());

    // Simple k-means clustering for segmentation (k=4 for our 4 regions)
    println!("Clustering texture features with k-means (k=4)...");

    // Initialize 4 random cluster centers
    let mut cluster_centers = Vec::with_capacity(4);
    for _ in 0..4 {
        let mut rng = rand::rng();
        let random_idx = rng.random_range(0..patch_features.len());
        cluster_centers.push(patch_features[random_idx].1.clone());
    }

    // Run k-means for a few iterations
    let iterations = 5;
    for iter in 0..iterations {
        // Assign patches to nearest cluster
        let mut cluster_assignments = vec![0; patch_features.len()];

        for (i, (_, features)) in patch_features.iter().enumerate() {
            let mut min_dist = f64::MAX;
            let mut best_cluster = 0;

            for (c, center) in cluster_centers.iter().enumerate() {
                // Calculate Euclidean distance
                let dist = features
                    .iter()
                    .zip(center.iter())
                    .map(|(&a, &b)| (a - b).powi(2))
                    .sum::<f64>()
                    .sqrt();

                if dist < min_dist {
                    min_dist = dist;
                    best_cluster = c;
                }
            }

            cluster_assignments[i] = best_cluster;
        }

        // Update cluster centers
        let mut new_centers = vec![vec![0.0; cluster_centers[0].len()]; cluster_centers.len()];
        let mut counts = vec![0; cluster_centers.len()];

        for (i, (_, features)) in patch_features.iter().enumerate() {
            let cluster = cluster_assignments[i];
            counts[cluster] += 1;

            for (j, &val) in features.iter().enumerate() {
                new_centers[cluster][j] += val;
            }
        }

        for (c, count) in counts.iter().enumerate() {
            if *count > 0 {
                for j in 0..new_centers[c].len() {
                    new_centers[c][j] /= *count as f64;
                }
            }
        }

        // Replace empty clusters with random points
        for (c, count) in counts.iter().enumerate() {
            if *count == 0 {
                let mut rng = rand::rng();
                let random_idx = rng.random_range(0..patch_features.len());
                new_centers[c] = patch_features[random_idx].1.clone();
            }
        }

        cluster_centers = new_centers;

        println!("  K-means iteration {}/{} complete"..iter + 1, iterations);
    }

    // Create final segmentation map
    println!("Creating segmentation map...");

    // Assign each patch center to its cluster
    for (_i, ((center_i, center_j), features)) in patch_features.iter().enumerate() {
        let mut min_dist = f64::MAX;
        let mut best_cluster = 0;

        for (c, center) in cluster_centers.iter().enumerate() {
            // Calculate Euclidean distance
            let dist = features
                .iter()
                .zip(center.iter())
                .map(|(&a, &b)| (a - b).powi(2))
                .sum::<f64>()
                .sqrt();

            if dist < min_dist {
                min_dist = dist;
                best_cluster = c;
            }
        }

        // Assign cluster to segmentation map
        segmentation[[*center_i, *center_j]] = best_cluster as f64;
    }

    // Interpolate to fill in gaps (simple nearest neighbor)
    for i in 0..size {
        for j in 0..size {
            if segmentation[[i, j]] == 0.0 {
                // Find nearest patch center
                let mut min_dist = f64::MAX;
                let mut best_cluster = 0;

                for (cluster, ((center_i, center_j), _features)) in
                    patch_features.iter().enumerate()
                {
                    let dist = ((i as isize - center_i as isize).pow(2)
                        + (j as isize - center_j as isize).pow(2))
                        as f64;

                    if dist < min_dist && cluster > 0.0 {
                        min_dist = dist;
                        best_cluster = cluster as usize;
                    }
                }

                segmentation[[i, j]] = best_cluster as f64;
            }
        }
    }

    // Print segmentation results
    println!("Segmentation complete! Results for the 4 regions:");

    // Count pixels in each cluster for each region
    let mut region_stats = vec![vec![0; 4]; 4];

    // Region 1: Top-left
    for i in 0..size / 2 {
        for j in 0..size / 2 {
            let cluster = segmentation[[i, j]] as usize;
            if cluster < 4 {
                region_stats[0][cluster] += 1;
            }
        }
    }

    // Region 2: Top-right
    for i in 0..size / 2 {
        for j in size / 2..size {
            let cluster = segmentation[[i, j]] as usize;
            if cluster < 4 {
                region_stats[1][cluster] += 1;
            }
        }
    }

    // Region 3: Bottom-left
    for i in size / 2..size {
        for j in 0..size / 2 {
            let cluster = segmentation[[i, j]] as usize;
            if cluster < 4 {
                region_stats[2][cluster] += 1;
            }
        }
    }

    // Region 4: Bottom-right
    for i in size / 2..size {
        for j in size / 2..size {
            let cluster = segmentation[[i, j]] as usize;
            if cluster < 4 {
                region_stats[3][cluster] += 1;
            }
        }
    }

    // Print statistics
    println!("\nRegion Assignment Statistics (rows=regions, columns=clusters):");
    println!(
        "{:<15} {:<10} {:<10} {:<10} {:<10}",
        "Region", "Cluster 0", "Cluster 1", "Cluster 2", "Cluster 3"
    );
    println!("{}", "-".repeat(60));

    let region_names = ["Top-Left", "Top-Right", "Bottom-Left", "Bottom-Right"];
    for (i, stats) in region_stats.iter().enumerate() {
        let total = stats.iter().sum::<usize>() as f64;
        let percentages: Vec<String> = stats
            .iter()
            .map(|&count| format!("{:.1}%", count as f64 / total * 100.0))
            .collect();

        println!(
            "{:<15} {:<10} {:<10} {:<10} {:<10}",
            region_names[i], percentages[0], percentages[1], percentages[2], percentages[3]
        );
    }
}

// Demonstrate region-based feature extraction
#[allow(dead_code)]
fn region_based_analysis() {
    println!("Creating a synthetic image with different regions...");

    // Create a synthetic image with distinct regions
    let size = 64;
    let mut image = Array2::zeros((size, size));

    // Define regions
    let regions = [
        // Rectangle 1 (dark)
        (10, 10, 25, 25, 50.0),
        // Rectangle 2 (medium)
        (35, 10, 55, 30, 120.0),
        // Rectangle 3 (bright)
        (10, 35, 30, 55, 200.0),
        // Circle (gradient)
        (40, 45, 15, 0, -1.0), // Special case for circle
    ];

    // Fill the background
    for i in 0..size {
        for j in 0..size {
            image[[i, j]] = 80.0;
        }
    }

    // Draw the regions
    for &(x1, y1, x2, y2, value) in &regions {
        if value < 0.0 {
            // Circle with gradient
            let radius = x2; // Last parameter is radius for circle
            let center_x = x1;
            let center_y = y1;

            for i in 0..size {
                for j in 0..size {
                    let dx = i as isize - center_x as isize;
                    let dy = j as isize - center_y as isize;
                    let distance = ((dx * dx + dy * dy) as f64).sqrt();

                    if distance < radius as f64 {
                        // Create a radial gradient
                        let intensity = 180.0 - distance / radius as f64 * 100.0;
                        image[[i, j]] = intensity;
                    }
                }
            }
        } else {
            // Rectangle
            for i in x1..x2 {
                for j in y1..y2 {
                    if i < size && j < size {
                        image[[i, j]] = value;
                    }
                }
            }
        }
    }

    // Add some noise
    for i in 0..size {
        for j in 0..size {
            image[[i, j]] += rand::random::<f64>() * 10.0 - 5.0;
            // Clamp values
            image[[i, j]] = image[[i, j]].max(0.0).min(255.0);
        }
    }

    println!("Image created with 4 regions: 3 rectangles and 1 circle");

    // Define region masks for analysis
    let mut region_masks = Vec::new();

    // Create masks for each region
    for (idx, &(x1, y1, x2, y2, value)) in regions.iter().enumerate() {
        let mut mask = Array2::zeros((size, size));

        if value < 0.0 {
            // Circle
            let radius = x2;
            let center_x = x1;
            let center_y = y1;

            for i in 0..size {
                for j in 0..size {
                    let dx = i as isize - center_x as isize;
                    let dy = j as isize - center_y as isize;
                    let distance = ((dx * dx + dy * dy) as f64).sqrt();

                    if distance < radius as f64 {
                        mask[[i, j]] = 1.0;
                    }
                }
            }
        } else {
            // Rectangle
            for i in x1..x2 {
                for j in y1..y2 {
                    if i < size && j < size {
                        mask[[i, j]] = 1.0;
                    }
                }
            }
        }

        region_masks.push((format!("Region {}", idx + 1), mask));
    }

    // Add a background mask
    let mut bg_mask = Array2::ones((size, size));
    for (_, mask) in &region_masks {
        for i in 0..size {
            for j in 0..size {
                if mask[[i, j]] > 0.0 {
                    bg_mask[[i, j]] = 0.0;
                }
            }
        }
    }
    region_masks.push(("Background".to_string(), bg_mask));

    println!("Extracting features for each region...");

    // Extract features for each region
    let options = ImageFeatureOptions {
        histogram: true,
        texture: true,
        edges: true,
        moments: true,
        haralick: false, // Haralick features need sufficient pixels
        lbp: false,      // LBP also needs sufficient pixels
        histogram_bins: 32,
        fast_mode: true,
        ..ImageFeatureOptions::default()
    };

    // Function to extract features from masked region
    let extract_region_features = |mask: &Array2<f64>| -> HashMap<String, f64> {
        // Create masked image
        let mut masked_image = Array2::zeros((size, size));
        for i in 0..size {
            for j in 0..size {
                if mask[[i, j]] > 0.0 {
                    masked_image[[i, j]] = image[[i, j]];
                }
            }
        }

        // Extract features
        match extract_image_features(&masked_image, &options) {
            Ok(features) => features,
            Err(_) => HashMap::new(),
        }
    };

    // Extract features for each region
    let mut region_features = Vec::new();
    for (name, mask) in &region_masks {
        let features = extract_region_features(mask);
        if !features.is_empty() {
            region_features.push((name.clone(), features));
        }
    }

    // Compare key features across regions
    println!("\nRegion Comparison:");
    println!("{}", "-".repeat(80));

    // Select key features to compare
    let key_features = [
        "intensity_mean",
        "intensity_std",
        "histogram_entropy",
        "texture_contrast",
        "texture_energy",
        "edge_mean_gradient",
    ];

    // Print header
    print!("{:<15}", "Feature");
    for (name_) in &region_features {
        print!(" {:<12}", name);
    }
    println!();
    println!("{}", "-".repeat(80));

    // Print feature values
    for feature in &key_features {
        print!("{:<15}", feature);

        for (_, features) in &region_features {
            if let Some(value) = features.get(*feature) {
                print!(" {:<12.4}", value);
            } else {
                print!(" {:<12}", "N/A");
            }
        }
        println!();
    }

    println!("\nRegion-based analysis complete!");
}