scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
use scirs2_signal::{SignalError, SignalResult};
use ndarray::{Array1, Array2};
// use plotters::prelude::*;
use num_complex::Complex64;
use rand::{rng, Rng};
use rand_distr::{Distribution, Normal};
// use scirs2_signal::{interpolate}; // Module not available yet
use std::f64::consts::PI;
use std::fs::File;
use std::io::Write;

#[allow(dead_code)]
fn main() -> SignalResult<()> {
    println!("Signal Interpolation Examples");

    // Example 1: Interpolate missing values in a simple signal
    interpolate_simple_signal()?;

    // Example 2: Compare different interpolation methods
    compare_interpolation_methods()?;

    // Example 3: Interpolate bandlimited signal
    interpolate_bandlimited_signal()?;

    // Example 4: Interpolate 2D data (image)
    interpolate_2d_data()?;

    // Example 5: Automatic method selection
    auto_interpolation_example()?;

    Ok(())
}

/// Generate a sine wave signal with some missing values
#[allow(dead_code)]
fn generate_test_signal(n_samples: usize, missingrate: f64) -> Array1<f64> {
    let mut signal = Array1::zeros(n_samples);
    let x = Array1::linspace(0.0, 10.0, n_samples);

    // Generate sine wave
    for i in 0..n_samples {
        signal[i] = (x[i] * PI / 2.0).sin() + 0.5 * (x[i] * PI).cos();
    }

    // Randomly set some values as missing (NaN)
    let mut rng = rand::rng();
    for i in 0..n_samples {
        if rng.random::<f64>() < missingrate {
            signal[i] = f64::NAN;
        }
    }

    signal
}

/// Export signal data to CSV for visualization
#[allow(dead_code)]
fn export_to_csv(_filename: &str, signals: &[(&str, &Array1<f64>)]) -> SignalResult<()> {
    let mut file =
        File::create(_filename).map_err(|e| SignalError::ComputationError(e.to_string()))?;

    // Write header
    let header = signals
        .iter()
        .map(|(name_,)| name_.to_string())
        .collect::<Vec<String>>()
        .join(",");
    writeln!(file, "{}", header).map_err(|e| SignalError::ComputationError(e.to_string()))?;

    // Find common signal length
    let min_len = signals.iter().map(|(_, data)| data.len()).min().unwrap();

    // Write data
    for i in 0..min_len {
        let line = signals
            .iter()
            .map(|(_, data)| {
                if data[i].is_nan() {
                    "NaN".to_string()
                } else {
                    data[i].to_string()
                }
            })
            .collect::<Vec<String>>()
            .join(",");
        writeln!(file, "{}", line).map_err(|e| SignalError::ComputationError(e.to_string()))?;
    }

    println!("Data exported to {}", _filename);
    Ok(())
}

/// Export 2D data to CSV for visualization
#[allow(dead_code)]
fn export_2d_to_csv(_filename: &str, data: &Array2<f64>) -> SignalResult<()> {
    let mut file =
        File::create(_filename).map_err(|e| SignalError::ComputationError(e.to_string()))?;
    let (n_rows, n_cols) = data.dim();

    for i in 0..n_rows {
        let line = (0..n_cols)
            .map(|j| {
                if data[[i, j]].is_nan() {
                    "NaN".to_string()
                } else {
                    data[[i, j]].to_string()
                }
            })
            .collect::<Vec<String>>()
            .join(",");
        writeln!(file, "{}", line).map_err(|e| SignalError::ComputationError(e.to_string()))?;
    }

    println!("2D data exported to {}", _filename);
    Ok(())
}

/// Example of interpolating a simple signal with missing values
#[allow(dead_code)]
fn interpolate_simple_signal() -> SignalResult<()> {
    println!("Interpolating a Simple Signal");

    // Generate a test signal with 20% missing values
    let n_samples = 100;
    let missing_rate = 0.2;
    let signal = generate_test_signal(n_samples, missing_rate);

    // Create a full reference signal without missing values
    let mut reference = Array1::zeros(n_samples);
    let x = Array1::linspace(0.0, 10.0, n_samples);
    for i in 0..n_samples {
        reference[i] = (x[i] * PI / 2.0).sin() + 0.5 * (x[i] * PI).cos();
    }

    // Configure interpolation
    let config = interpolate::InterpolationConfig {
        max_iterations: 100,
        convergence_threshold: 1e-6,
        regularization: 1e-6,
        window_size: 10,
        extrapolate: true,
        monotonic: false,
        smoothing: false,
        smoothing_factor: 0.1,
        frequency_constraint: true,
        cutoff_frequency: 0.3,
    };

    // Apply linear interpolation
    let linear_result = interpolate::linear_interpolate(&signal)?;

    // Apply cubic spline interpolation
    let spline_result = interpolate::cubic_spline_interpolate(&signal, &config)?;

    // Apply spectral interpolation
    let spectral_result = interpolate::spectral_interpolate(&signal, &config)?;

    // Calculate error metrics
    let mut linear_sse = 0.0;
    let mut spline_sse = 0.0;
    let mut spectral_sse = 0.0;
    let mut count = 0;

    for i in 0..n_samples {
        if signal[i].is_nan() {
            let linear_err = linear_result[i] - reference[i];
            let spline_err = spline_result[i] - reference[i];
            let spectral_err = spectral_result[i] - reference[i];

            linear_sse += linear_err * linear_err;
            spline_sse += spline_err * spline_err;
            spectral_sse += spectral_err * spectral_err;
            count += 1;
        }
    }

    let linear_mse = linear_sse / count as f64;
    let spline_mse = spline_sse / count as f64;
    let spectral_mse = spectral_sse / count as f64;

    println!("Mean squared error (missing values only):");
    println!("  Linear: {:.6}", linear_mse);
    println!("  Cubic Spline: {:.6}", spline_mse);
    println!("  Spectral: {:.6}", spectral_mse);

    // Export data for plotting
    export_to_csv(
        "interpolation_simple.csv",
        &[
            ("Reference", &reference),
            ("Missing", &signal),
            ("Linear", &linear_result),
            ("CubicSpline", &spline_result),
            ("Spectral", &spectral_result),
        ],
    )?;

    Ok(())
}

/// Example of comparing different interpolation methods
#[allow(dead_code)]
fn compare_interpolation_methods() -> SignalResult<()> {
    println!("Comparing Interpolation Methods");

    // Generate a more complex test signal
    let n_samples = 200;

    // Create a complex signal with multiple features
    let mut reference = Array1::zeros(n_samples);
    let x = Array1::linspace(0.0, 10.0, n_samples);

    for i in 0..n_samples {
        // Multi-component signal with different frequencies
        reference[i] = (x[i] as f64).sin()
            + 0.5 * ((x[i] * 3.0) as f64).sin()
            + 0.2 * ((x[i] * 7.0) as f64).sin();

        // Add some discontinuities
        if x[i] > 3.0 && x[i] < 4.0 {
            reference[i] += 1.0;
        }
        if x[i] > 7.0 && x[i] < 8.0 {
            reference[i] -= 1.0;
        }
    }

    // Create a signal with missing values in specific regions
    let mut signal = reference.clone();

    // Remove a chunk of data
    for i in 50..70 {
        signal[i] = f64::NAN;
    }

    // Remove scattered points
    for i in 100..180 {
        if i % 5 == 0 {
            signal[i] = f64::NAN;
        }
    }

    // Configure interpolation
    let config = interpolate::InterpolationConfig {
        max_iterations: 100,
        convergence_threshold: 1e-6,
        regularization: 1e-6,
        window_size: 10,
        extrapolate: true,
        monotonic: false,
        smoothing: false,
        smoothing_factor: 0.1,
        frequency_constraint: true,
        cutoff_frequency: 0.3,
    };

    // Apply different interpolation methods
    let methods = [
        ("Linear", interpolate::InterpolationMethod::Linear),
        ("CubicSpline", interpolate::InterpolationMethod::CubicSpline),
        (
            "CubicHermite",
            interpolate::InterpolationMethod::CubicHermite,
        ),
        (
            "MinimumEnergy",
            interpolate::InterpolationMethod::MinimumEnergy,
        ),
        ("Sinc", interpolate::InterpolationMethod::Sinc),
        ("Spectral", interpolate::InterpolationMethod::Spectral),
        (
            "NearestNeighbor",
            interpolate::InterpolationMethod::NearestNeighbor,
        ),
    ];

    let mut results = Vec::new();
    let mut mse_values = Vec::new();

    for &(name, method) in &methods {
        let result = interpolate::interpolate(&signal, method, &config)?;

        // Calculate error metrics
        let mut sse = 0.0;
        let mut count = 0;

        for i in 0..n_samples {
            if signal[i].is_nan() {
                let err = result[i] - reference[i];
                sse += err * err;
                count += 1;
            }
        }

        let mse = sse / count as f64;
        println!("  {}: MSE = {:.6}", name, mse);

        results.push((name, result.clone()));
        mse_values.push((name, mse));
    }

    // Export data for plotting
    let mut export_data = vec![("Reference", &reference), ("Missing", &signal)];
    for (name, result) in &results {
        export_data.push((*name, result));
    }

    export_to_csv("interpolation_comparison.csv", &export_data)?;

    // Export MSE values
    let mut mse_file = File::create("interpolation_mse.csv")
        .map_err(|e| SignalError::ComputationError(e.to_string()))?;
    writeln!(mse_file, "Method,MSE").map_err(|e| SignalError::ComputationError(e.to_string()))?;

    for &(name, mse) in &mse_values {
        writeln!(mse_file, "{},{}", name, mse)
            .map_err(|e| SignalError::ComputationError(e.to_string()))?;
    }

    println!("MSE values exported to interpolation_mse.csv");

    Ok(())
}

/// Example of interpolating a bandlimited signal
#[allow(dead_code)]
fn interpolate_bandlimited_signal() -> SignalResult<()> {
    println!("Interpolating a Bandlimited Signal");

    // Generate a bandlimited signal
    let n_samples = 200;
    let nyquist = n_samples / 2;
    let cutoff = nyquist / 4; // Use 1/4 of Nyquist frequency

    // Create frequency domain representation
    let mut spectrum = vec![Complex64::new(0.0, 0.0); n_samples];

    // Add some frequency components
    let mut rng = rand::rng();
    let normal = Normal::<f64>::new(0.0, 1.0).unwrap();

    for i in 1..cutoff {
        let amplitude: f64 = normal.sample(&mut rng).abs();
        let phase = rng.random::<f64>() * 2.0 * PI;

        // Symmetric for real signal
        spectrum[i] = Complex64::new(amplitude * phase.cos(), amplitude * phase.sin());
        spectrum[n_samples - i] = Complex64::new(amplitude * phase.cos(), -amplitude * phase.sin());
    }

    // DC component
    spectrum[0] = Complex64::new(normal.sample(&mut rng).abs() as f64, 0.0);

    // Create Nyquist component if n_samples is even
    if n_samples % 2 == 0 {
        spectrum[n_samples / 2] = Complex64::new(normal.sample(&mut rng).abs() as f64, 0.0);
    }

    // Inverse FFT to get the time domain signal
    let mut planner = rustfft::FftPlanner::new();
    let ifft = planner.plan_fft_inverse(n_samples);

    let mut spectrum_copy = spectrum.clone();
    ifft.process(&mut spectrum_copy);

    // Scale and extract real part
    let scale = 1.0 / n_samples as f64;
    let mut reference = Array1::zeros(n_samples);
    for i in 0..n_samples {
        reference[i] = spectrum_copy[i].re * scale;
    }

    // Create a signal with missing values (simulate downsampling)
    let mut signal = reference.clone();

    // Remove every other point
    for i in 0..n_samples {
        if i % 2 == 1 {
            signal[i] = f64::NAN;
        }
    }

    // Configure interpolation
    let config = interpolate::InterpolationConfig {
        max_iterations: 100,
        convergence_threshold: 1e-6,
        regularization: 1e-6,
        window_size: 10,
        extrapolate: true,
        monotonic: false,
        smoothing: false,
        smoothing_factor: 0.1,
        frequency_constraint: true,
        cutoff_frequency: 0.5, // Use full bandwidth for bandlimited signal
    };

    // Apply different interpolation methods
    let linear_result =
        interpolate::interpolate(&signal, interpolate::InterpolationMethod::Linear, &config)?;

    let spline_result = interpolate::interpolate(
        &signal,
        interpolate::InterpolationMethod::CubicSpline,
        &config,
    )?;

    let sinc_result =
        interpolate::interpolate(&signal, interpolate::InterpolationMethod::Sinc, &config)?;

    let spectral_result =
        interpolate::interpolate(&signal, interpolate::InterpolationMethod::Spectral, &config)?;

    // Calculate error metrics
    let mut linear_sse = 0.0;
    let mut spline_sse = 0.0;
    let mut sinc_sse = 0.0;
    let mut spectral_sse = 0.0;
    let mut count = 0;

    for i in 0..n_samples {
        if signal[i].is_nan() {
            let linear_err = linear_result[i] - reference[i];
            let spline_err = spline_result[i] - reference[i];
            let sinc_err = sinc_result[i] - reference[i];
            let spectral_err = spectral_result[i] - reference[i];

            linear_sse += linear_err * linear_err;
            spline_sse += spline_err * spline_err;
            sinc_sse += sinc_err * sinc_err;
            spectral_sse += spectral_err * spectral_err;
            count += 1;
        }
    }

    let linear_mse = linear_sse / count as f64;
    let spline_mse = spline_sse / count as f64;
    let sinc_mse = sinc_sse / count as f64;
    let spectral_mse = spectral_sse / count as f64;

    println!("Mean squared error (bandlimited signal):");
    println!("  Linear: {:.6}", linear_mse);
    println!("  Cubic Spline: {:.6}", spline_mse);
    println!("  Sinc: {:.6}", sinc_mse);
    println!("  Spectral: {:.6}", spectral_mse);

    // Export data for plotting
    export_to_csv(
        "interpolation_bandlimited.csv",
        &[
            ("Reference", &reference),
            ("Downsampled", &signal),
            ("Linear", &linear_result),
            ("CubicSpline", &spline_result),
            ("Sinc", &sinc_result),
            ("Spectral", &spectral_result),
        ],
    )?;

    Ok(())
}

/// Example of interpolating a 2D dataset (image)
#[allow(dead_code)]
fn interpolate_2d_data() -> SignalResult<()> {
    println!("Interpolating 2D Data (Image)");

    // Create a 2D test image
    let n_rows = 50;
    let n_cols = 50;
    let mut image = Array2::zeros((n_rows, n_cols));

    // Generate a 2D pattern (peaks function)
    for i in 0..n_rows {
        for j in 0..n_cols {
            let x = (j as f64) / (n_cols as f64) * 3.0 - 1.5;
            let y = (i as f64) / (n_rows as f64) * 3.0 - 1.5;

            let r1 = (x * x + y * y).sqrt();
            let r2 = ((x + 1.0) * (x + 1.0) + y * y).sqrt();
            let r3 = ((x - 1.0) * (x - 1.0) + y * y).sqrt();

            image[[i, j]] = 3.0 * (1.0 - r1).powi(2) * (-r1 / 3.0).exp()
                - 10.0 * (r1 / 5.0 - r1.powi(3)) * (-r1 * r1).exp()
                - 1.0 / 3.0 * (-r2 * r2).exp()
                + 1.0 / 5.0 * (-r3 * r3).exp();
        }
    }

    // Create a copy with missing values
    let mut missing_image = image.clone();

    // Remove a rectangular region
    for i in 15..30 {
        for j in 20..40 {
            missing_image[[i, j]] = f64::NAN;
        }
    }

    // Remove scattered points
    let mut rng = rand::rng();
    for _ in 0..500 {
        let i = rng.random_range(0..n_rows);
        let j = rng.random_range(0..n_cols);
        missing_image[[i..j]] = f64::NAN;
    }

    // Configure interpolation
    let config = interpolate::InterpolationConfig {
        max_iterations: 100,
        convergence_threshold: 1e-6,
        regularization: 1e-6,
        window_size: 10,
        extrapolate: true,
        monotonic: false,
        smoothing: true,
        smoothing_factor: 0.1,
        frequency_constraint: true,
        cutoff_frequency: 0.3,
    };

    // Apply different interpolation methods
    let linear_result = interpolate::interpolate_2d(
        &missing_image,
        interpolate::InterpolationMethod::Linear,
        &config,
    )?;

    let spline_result = interpolate::interpolate_2d(
        &missing_image,
        interpolate::InterpolationMethod::CubicSpline,
        &config,
    )?;

    let nearest_result = interpolate::interpolate_2d(
        &missing_image,
        interpolate::InterpolationMethod::NearestNeighbor,
        &config,
    )?;

    // Calculate error metrics
    let mut linear_sse = 0.0;
    let mut spline_sse = 0.0;
    let mut nearest_sse = 0.0;
    let mut count = 0;

    for i in 0..n_rows {
        for j in 0..n_cols {
            if missing_image[[i, j]].is_nan() {
                let linear_err = linear_result[[i, j]] - image[[i, j]];
                let spline_err = spline_result[[i, j]] - image[[i, j]];
                let nearest_err = nearest_result[[i, j]] - image[[i, j]];

                linear_sse += linear_err * linear_err;
                spline_sse += spline_err * spline_err;
                nearest_sse += nearest_err * nearest_err;
                count += 1;
            }
        }
    }

    let linear_mse = linear_sse / count as f64;
    let spline_mse = spline_sse / count as f64;
    let nearest_mse = nearest_sse / count as f64;

    println!("Mean squared error (2D image):");
    println!("  Linear: {:.6}", linear_mse);
    println!("  Cubic Spline: {:.6}", spline_mse);
    println!("  Nearest Neighbor: {:.6}", nearest_mse);

    // Export data for visualization
    export_2d_to_csv("interpolation_2d_original.csv", &image)?;
    export_2d_to_csv("interpolation_2d_missing.csv", &missing_image)?;
    export_2d_to_csv("interpolation_2d_linear.csv", &linear_result)?;
    export_2d_to_csv("interpolation_2d_spline.csv", &spline_result)?;
    export_2d_to_csv("interpolation_2d_nearest.csv", &nearest_result)?;

    Ok(())
}

/// Example of automatic method selection for interpolation
#[allow(dead_code)]
fn auto_interpolation_example() -> SignalResult<()> {
    println!("Automatic Method Selection for Interpolation");

    // Create a piecewise signal with different characteristics
    let n_samples = 300;
    let mut reference = Array1::zeros(n_samples);
    let x = Array1::linspace(0.0, 10.0, n_samples);

    // Piecewise signal: smooth, linear, oscillatory
    for i in 0..n_samples {
        if x[i] < 3.0 {
            // Smooth region: polynomial
            reference[i] = 1.0 + 0.5 * x[i] - 0.1 * x[i] * x[i];
        } else if x[i] < 6.0 {
            // Linear region
            reference[i] = 1.0 + 0.3 * (x[i] - 3.0);
        } else {
            // Oscillatory region
            reference[i] = 2.0 + 0.5 * ((x[i] - 6.0) as f64).sin() * (x[i] - 6.0);
        }
    }

    // Create three test cases with different missing patterns
    let mut signals = Vec::new();

    // Case 1: Random missing values
    let mut signal1 = reference.clone();
    let _rng = rand::rng();
    for i in 0..n_samples {
        if rng.random::<f64>() < 0.2 {
            signal1[i] = f64::NAN;
        }
    }
    signals.push(("Random", signal1));

    // Case 2: Blocks of missing values
    let mut signal2 = reference.clone();
    for i in 0..n_samples {
        if (50..70).contains(&i) || (150..180).contains(&i) || (250..270).contains(&i) {
            signal2[i] = f64::NAN;
        }
    }
    signals.push(("Blocks", signal2));

    // Case 3: Sparse sampling
    let mut signal3 = Array1::zeros(n_samples);
    signal3.fill(f64::NAN);
    for i in 0..n_samples {
        if i % 10 == 0 {
            signal3[i] = reference[i];
        }
    }
    signals.push(("Sparse", signal3));

    // Configure interpolation
    let config = interpolate::InterpolationConfig {
        max_iterations: 100,
        convergence_threshold: 1e-6,
        regularization: 1e-6,
        window_size: 10,
        extrapolate: true,
        monotonic: false,
        smoothing: false,
        smoothing_factor: 0.1,
        frequency_constraint: true,
        cutoff_frequency: 0.3,
    };

    // Apply auto interpolation with cross-validation
    for (name, signal) in &signals {
        let (result, best_method) = interpolate::auto_interpolate(signal, &config, true)?;

        // Calculate error metrics
        let mut sse = 0.0;
        let mut count = 0;

        for i in 0..n_samples {
            if signal[i].is_nan() {
                let err = result[i] - reference[i];
                sse += err * err;
                count += 1;
            }
        }

        let mse = sse / count as f64;

        println!("{}:", name);
        println!("  Best method: {:?}", best_method);
        println!("  MSE: {:.6}", mse);

        // Export data for plotting
        export_to_csv(
            &format!("interpolation_auto_{}.csv", name.to_lowercase()),
            &[
                ("Reference", &reference),
                ("Missing", signal),
                ("Interpolated", &result),
            ],
        )?;
    }

    Ok(())
}