scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
use ndarray::{Array1, Array2, Array3};
use rand::{self as rng, Rng};
use std::fs::File;
use std::io::Write;

use scirs2_signal::nlm::{
    nlm_block_matching_2d, nlm_color_image, nlm_denoise_1d, nlm_denoise_2d, nlm_multiscale_2d,
    NlmConfig,
};
use std::f64::consts::PI;

#[allow(dead_code)]
fn main() {
    println!("Non-Local Means Denoising Examples");
    println!("---------------------------------");

    // Create test signals and images
    println!("\nGenerating test data...");
    let (clean_signal, noisy_signal) = generate_test_signal();
    let (clean_image, noisy_image) = generate_test_image();
    let (clean_color_image, noisy_color_image) = generate_color_image();

    // 1D NLM denoising
    println!("\n1. 1D Signal Non-Local Means Denoising");

    // Apply NLM with different parameters
    let basic_config = NlmConfig::default();
    let denoised_signal = nlm_denoise_1d(&noisy_signal, &basic_config).unwrap();

    // Calculate SNR improvement
    let input_snr = calculate_snr(&clean_signal, &noisy_signal);
    let output_snr = calculate_snr(&clean_signal, &denoised_signal);

    println!("   Input SNR: {:.2} dB", input_snr);
    println!("   Output SNR: {:.2} dB", output_snr);
    println!("   Improvement: {:.2} dB", output_snr - input_snr);

    // Save results to CSV for plotting
    save_signal_to_csv(
        "nlm_1d_results.csv",
        &clean_signal,
        &noisy_signal,
        &denoised_signal,
    );
    println!("   Saved results to nlm_1d_results.csv");

    // 2D Image NLM denoising
    println!("\n2. 2D Image Non-Local Means Denoising");

    // Create configurations with different parameters
    let mut standard_config = NlmConfig::default();
    standard_config.patch_size = 5;
    standard_config.search_window = 17;
    standard_config.h = 0.4;

    let mut fast_config = standard_config.clone();
    fast_config.fast_mode = true;
    fast_config.step_size = 2;

    // Apply different NLM variants
    let denoised_standard = nlm_denoise_2d(&noisy_image, &standard_config).unwrap();
    let denoised_fast = nlm_denoise_2d(&noisy_image, &fast_config).unwrap();
    let denoised_block = nlm_block_matching_2d(&noisy_image, &standard_config, 16).unwrap();

    // Calculate image SNR for each method
    let image_input_snr = calculate_image_snr(&clean_image, &noisy_image);
    let standard_snr = calculate_image_snr(&clean_image, &denoised_standard);
    let fast_snr = calculate_image_snr(&clean_image, &denoised_fast);
    let block_snr = calculate_image_snr(&clean_image, &denoised_block);

    println!("   Image input SNR: {:.2} dB", image_input_snr);
    println!(
        "   Standard NLM SNR: {:.2} dB (gain: {:.2} dB)",
        standard_snr,
        standard_snr - image_input_snr
    );
    println!(
        "   Fast NLM SNR: {:.2} dB (gain: {:.2} dB)",
        fast_snr,
        fast_snr - image_input_snr
    );
    println!(
        "   Block-matching NLM SNR: {:.2} dB (gain: {:.2} dB)",
        block_snr,
        block_snr - image_input_snr
    );

    // Save images to CSV for visualization
    save_image_to_csv("nlm_original.csv", &clean_image);
    save_image_to_csv("nlm_noisy.csv", &noisy_image);
    save_image_to_csv("nlm_standard.csv", &denoised_standard);
    save_image_to_csv("nlm_fast.csv", &denoised_fast);
    save_image_to_csv("nlm_block.csv", &denoised_block);

    println!("   Saved image results to CSV files");

    // Multi-scale NLM denoising
    println!("\n3. Multi-scale Non-Local Means Denoising");

    let denoised_multiscale = nlm_multiscale_2d(&noisy_image, &standard_config, 2).unwrap();
    let multiscale_snr = calculate_image_snr(&clean_image, &denoised_multiscale);

    println!(
        "   Multi-scale NLM SNR: {:.2} dB (gain: {:.2} dB)",
        multiscale_snr,
        multiscale_snr - image_input_snr
    );

    save_image_to_csv("nlm_multiscale.csv", &denoised_multiscale);

    // Color image denoising
    println!("\n4. Color Image Non-Local Means Denoising");

    let denoised_color = nlm_color_image(&noisy_color_image, &standard_config).unwrap();
    let color_input_snr = calculate_color_image_snr(&clean_color_image, &noisy_color_image);
    let color_output_snr = calculate_color_image_snr(&clean_color_image, &denoised_color);

    println!("   Color image input SNR: {:.2} dB", color_input_snr);
    println!(
        "   Color image output SNR: {:.2} dB (gain: {:.2} dB)",
        color_output_snr,
        color_output_snr - color_input_snr
    );

    // Save color channels to CSV
    for c in 0..3 {
        let channel_name = match c {
            0 => "red",
            1 => "green",
            2 => "blue",
            _ => "unknown",
        };

        save_image_to_csv(
            &format!("nlm_color_clean_{}.csv", channel_name),
            &extract_color_channel(&clean_color_image, c),
        );

        save_image_to_csv(
            &format!("nlm_color_noisy_{}.csv", channel_name),
            &extract_color_channel(&noisy_color_image, c),
        );

        save_image_to_csv(
            &format!("nlm_color_denoised_{}.csv", channel_name),
            &extract_color_channel(&denoised_color, c),
        );
    }

    println!("   Saved color image results to CSV files");

    // Parameter sensitivity analysis
    println!("\n5. Parameter Sensitivity Analysis");

    // Test different patch sizes
    let patch_sizes = [3, 5, 7, 9];
    for &patch_size in &patch_sizes {
        let mut config = standard_config.clone();
        config.patch_size = patch_size;

        let denoised = nlm_denoise_2d(&noisy_image, &config).unwrap();
        let snr = calculate_image_snr(&clean_image, &denoised);

        println!("   Patch size {}: SNR = {:.2} dB", patch_size, snr);
    }

    // Test different filtering parameters (h)
    let h_values = [0.1, 0.2, 0.4, 0.8, 1.6];
    for &h in &h_values {
        let mut config = standard_config.clone();
        config.h = h;

        let denoised = nlm_denoise_2d(&noisy_image, &config).unwrap();
        let snr = calculate_image_snr(&clean_image, &denoised);

        println!("   Filtering parameter h = {}: SNR = {:.2} dB", h, snr);
    }

    println!("\nDone! All results saved to CSV files for visualization.");
}

/// Generates a test 1D signal with additive noise
#[allow(dead_code)]
fn generate_test_signal() -> (Array1<f64>, Array1<f64>) {
    // Create a piecewise signal with edges and smooth regions
    let n = 500;
    let mut clean_signal = Array1::zeros(n);

    // Add step functions
    for i in 0..n {
        if i < 100 {
            clean_signal[i] = 0.0;
        } else if i < 200 {
            clean_signal[i] = 1.0;
        } else if i < 300 {
            clean_signal[i] = 0.5;
        } else if i < 400 {
            clean_signal[i] = 0.8;
        } else {
            clean_signal[i] = 0.2;
        }
    }

    // Smooth transitions
    let smooth_width = 10;
    for edge in [100, 200, 300, 400] {
        if edge >= smooth_width && edge < n - smooth_width {
            for i in edge - smooth_width..edge + smooth_width {
                let x = (i as f64 - edge as f64) / smooth_width as f64;
                let weight = 0.5 * (1.0 + (x * std::f64::consts::PI).tanh());

                if i < edge {
                    let left_val = clean_signal[edge - smooth_width - 1];
                    let right_val = clean_signal[edge + smooth_width];
                    clean_signal[i] = left_val * (1.0 - weight) + right_val * weight;
                }
            }
        }
    }

    // Add noise
    let mut rng = rand::rng();
    let noise_level = 0.15;
    let mut noisy_signal = clean_signal.clone();

    for i in 0..n {
        noisy_signal[i] += noise_level * rng.random_range(-1.0..1.0);
    }

    (clean_signal, noisy_signal)
}

/// Generates a test 2D image with additive noise
#[allow(dead_code)]
fn generate_test_image() -> (Array2<f64>, Array2<f64>) {
    // Create a test image with geometric shapes
    let size = 64;
    let mut clean_image = Array2::zeros((size, size));

    // Add shapes
    for i in 0..size {
        for j in 0..size {
            // Normalize coordinates to [-1, 1]
            let x = j as f64 / size as f64 * 2.0 - 1.0;
            let y = i as f64 / size as f64 * 2.0 - 1.0;

            // Circle
            if (x * x + y * y) < 0.4 {
                clean_image[[i, j]] = 1.0;
            }

            // Rectangle
            if x.abs() < 0.2 && y.abs() < 0.6 {
                clean_image[[i, j]] = 0.8;
            }

            // Cross
            if (x.abs() < 0.1 || y.abs() < 0.1) && x.abs() < 0.7 && y.abs() < 0.7 {
                clean_image[[i, j]] = 0.6;
            }

            // Background gradient
            clean_image[[i, j]] += 0.2 * x;
        }
    }

    // Normalize to [0, 1]
    let min_val = clean_image.iter().fold(f64::INFINITY, |a, &b| a.min(b));
    let max_val = clean_image.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));

    if (max_val - min_val).abs() > 1e-10 {
        clean_image.mapv_inplace(|x| (x - min_val) / (max_val - min_val));
    }

    // Add noise
    let mut rng = rand::rng();
    let noise_level = 0.1;
    let mut noisy_image = clean_image.clone();

    for i in 0..size {
        for j in 0..size {
            noisy_image[[i, j]] += noise_level * rng.random_range(-1.0..1.0);
        }
    }

    // Clip to [0..1]
    noisy_image.mapv_inplace(|x| x.clamp(0.0, 1.0));

    (clean_image, noisy_image)
}

/// Generates a test color image with additive noise
#[allow(dead_code)]
fn generate_color_image() -> (Array3<f64>, Array3<f64>) {
    // Create a color image with RGB channels
    let size = 64;
    let mut clean_image = Array3::zeros((size, size, 3));

    // Add color patterns
    for i in 0..size {
        for j in 0..size {
            // Normalize coordinates to [-1, 1]
            let x = j as f64 / size as f64 * 2.0 - 1.0;
            let y = i as f64 / size as f64 * 2.0 - 1.0;

            // Red channel: radial gradient
            clean_image[[i, j, 0]] = 0.5 * (1.0 - (x * x + y * y).sqrt().min(1.0));

            // Green channel: vertical stripes
            clean_image[[i, j, 1]] = if ((j as f64 / 8.0).floor() as i32) % 2 == 0 {
                0.8
            } else {
                0.2
            };

            // Blue channel: horizontal gradient
            clean_image[[i, j, 2]] = 0.5 + 0.5 * y;

            // Add a colored square in the middle
            if x.abs() < 0.4 && y.abs() < 0.4 {
                clean_image[[i, j, 0]] = 0.9; // Red
                clean_image[[i, j, 1]] = 0.7; // Green
                clean_image[[i, j, 2]] = 0.2; // Blue
            }
        }
    }

    // Add noise
    let mut rng = rand::rng();
    let noise_level = 0.1;
    let mut noisy_image = clean_image.clone();

    for i in 0..size {
        for j in 0..size {
            for c in 0..3 {
                noisy_image[[i, j, c]] += noise_level * rng.random_range(-1.0..1.0);
            }
        }
    }

    // Clip to [0..1]
    noisy_image.mapv_inplace(|x| x.clamp(0.0, 1.0));

    (clean_image, noisy_image)
}

/// Helper function to extract a color channel from a color image
#[allow(dead_code)]
fn extract_color_channel(image: &Array3<f64>, channel: usize) -> Array2<f64> {
    let (height, width_) = image.dim();
    let mut result = Array2::zeros((height, width));

    for i in 0..height {
        for j in 0..width {
            result[[i, j]] = image[[i, j, channel]];
        }
    }

    result
}

/// Calculates the Signal-to-Noise Ratio (SNR) in dB for 1D signals
#[allow(dead_code)]
fn calculate_snr(clean: &Array1<f64>, noisy: &Array1<f64>) -> f64 {
    if clean.len() != noisy.len() {
        return f64::NEG_INFINITY;
    }

    let mut signal_power = 0.0;
    let mut noise_power = 0.0;

    for i in 0.._clean.len() {
        let diff = clean[i] - noisy[i];
        signal_power += clean[i] * clean[i];
        noise_power += diff * diff;
    }

    if noise_power < 1e-10 {
        return f64::INFINITY;
    }

    10.0 * (signal_power / noise_power).log10()
}

/// Calculates the Signal-to-Noise Ratio (SNR) in dB for 2D images
#[allow(dead_code)]
fn calculate_image_snr(clean: &Array2<f64>, noisy: &Array2<f64>) -> f64 {
    if clean.dim() != noisy.dim() {
        return f64::NEG_INFINITY;
    }

    let (height, width) = clean.dim();
    let mut signal_power = 0.0;
    let mut noise_power = 0.0;

    for i in 0..height {
        for j in 0..width {
            let diff = clean[[i, j]] - noisy[[i, j]];
            signal_power += clean[[i, j]] * clean[[i, j]];
            noise_power += diff * diff;
        }
    }

    if noise_power < 1e-10 {
        return f64::INFINITY;
    }

    10.0 * (signal_power / noise_power).log10()
}

/// Calculates the Signal-to-Noise Ratio (SNR) in dB for color images
#[allow(dead_code)]
fn calculate_color_image_snr(clean: &Array3<f64>, noisy: &Array3<f64>) -> f64 {
    if clean.dim() != noisy.dim() {
        return f64::NEG_INFINITY;
    }

    let (height, width, channels) = clean.dim();
    let mut signal_power = 0.0;
    let mut noise_power = 0.0;

    for i in 0..height {
        for j in 0..width {
            for c in 0..channels {
                let diff = clean[[i, j, c]] - noisy[[i, j, c]];
                signal_power += clean[[i, j, c]] * clean[[i, j, c]];
                noise_power += diff * diff;
            }
        }
    }

    if noise_power < 1e-10 {
        return f64::INFINITY;
    }

    10.0 * (signal_power / noise_power).log10()
}

/// Saves 1D signals to a CSV file for plotting
#[allow(dead_code)]
fn save_signal_to_csv(
    filename: &str,
    clean: &Array1<f64>,
    noisy: &Array1<f64>,
    denoised: &Array1<f64>,
) {
    let mut file = File::create(filename).expect("Failed to create file");

    // Write header
    writeln!(file, "index,clean,noisy,denoised").expect("Failed to write header");

    // Write data
    for i in 0..clean.len() {
        writeln!(file, "{},{},{},{}", i, clean[i], noisy[i], denoised[i])
            .expect("Failed to write data");
    }
}

/// Saves a 2D image to a CSV file for visualization
#[allow(dead_code)]
fn save_image_to_csv(filename: &str, image: &Array2<f64>) {
    let mut file = File::create(_filename).expect("Failed to create file");

    let (height, width) = image.dim();

    // Write data in CSV format suitable for heatmap visualization
    for i in 0..height {
        for j in 0..width {
            if j > 0 {
                write!(file, ",").expect("Failed to write separator");
            }
            write!(file, "{:.6}", image[[i, j]]).expect("Failed to write data");
        }
        writeln!(file).expect("Failed to write newline");
    }
}