scirs2-signal 0.1.0-rc.2

Signal processing module for SciRS2 (scirs2-signal)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
use crate::error::{SignalError, SignalResult};
use ndarray::{Array1, Array2};
// use plotters::prelude::*;  // Plotters dependency not available
use rand::rng;
use rand_distr::{Distribution, Normal};
use scirs2_signal::{kalman, SignalError, SignalResult};
use std::f64::consts::PI;
use std::fs::File;
use std::io::Write;

#[allow(dead_code)]
fn main() -> SignalResult<()> {
    println!("Kalman Filter Examples");

    // Example 1: Basic Kalman filtering for a noisy sine wave
    basic_kalman_filtering()?;

    // Example 2: Extended Kalman filter for nonlinear system
    extended_kalman_filtering()?;

    // Example 3: Unscented Kalman filter for nonlinear system
    unscented_kalman_filtering()?;

    // Example 4: Kalman filtering for signal denoising
    kalman_denoising()?;

    // Example 5: Adaptive Kalman filtering for time-varying noise
    adaptive_kalman_filtering()?;

    // Example 6: Robust Kalman filtering for signals with outliers
    robust_kalman_filtering()?;

    Ok(())
}

/// Generate a noisy sine wave with optional outliers
#[allow(dead_code)]
fn generate_noisy_sine(
    n_samples: usize,
    amplitude: f64,
    frequency: f64,
    noise_level: f64,
    outlier_prob: Option<f64>,
    outlier_scale: Option<f64>,
) -> Array1<f64> {
    let mut rng = rng();
    let normal = Normal::new(0.0, noise_level).unwrap();
    let t = Array1::linspace(0.0, 10.0, n_samples);

    let mut signal = Array1::zeros(n_samples);
    for i in 0..n_samples {
        signal[i] = amplitude * (2.0 * PI * frequency * t[i]).sin();

        // Add Gaussian noise
        signal[i] += normal.sample(&mut rng);

        // Add outliers with specified probability
        if let (Some(_prob), Some(_scale)) = (outlier_prob, outlier_scale) {
            if rand::random::<f64>() < _prob {
                signal[i] += normal.sample(&mut rng) * scale;
            }
        }
    }

    signal
}

/// Export signal data to CSV for external plotting
#[allow(dead_code)]
fn export_to_csv(_filename: &str, signals: &[(&str, &Array1<f64>)]) -> SignalResult<()> {
    let mut file =
        File::create(_file_name).map_err(|e| SignalError::ComputationError(e.to_string()))?;

    // Write header
    let header = signals
        .iter()
        .map(|(name_)| name.to_string())
        .collect::<Vec<String>>()
        .join(",");
    writeln!(file, "{}", header).map_err(|e| SignalError::ComputationError(e.to_string()))?;

    // Find common signal length
    let min_len = signals.iter().map(|(_, data)| data.len()).min().unwrap();

    // Write data
    for i in 0..min_len {
        let line = signals
            .iter()
            .map(|(_, data)| data[i].to_string())
            .collect::<Vec<String>>()
            .join(",");
        writeln!(file, "{}", line).map_err(|e| SignalError::ComputationError(e.to_string()))?;
    }

    println!("Data exported to {}", file_name);
    Ok(())
}

/// Basic Kalman filtering example
#[allow(dead_code)]
fn basic_kalman_filtering() -> SignalResult<()> {
    println!("Basic Kalman Filtering Example");

    // Generate test signal: sine wave with noise
    let n_samples = 200;
    let amplitude = 1.0;
    let frequency = 0.5;
    let noise_level = 0.3;

    let true_signal = Array1::linspace(0.0, 10.0, n_samples)
        .map(|t| amplitude * (2.0 * PI * frequency * t).sin());

    let noisy_signal =
        generate_noisy_sine(n_samples, amplitude, frequency, noise_level, None, None);

    // Define a simple constant-velocity model
    // State is [position, velocity]
    // x(k+1) = F*x(k) + w(k)
    // z(k) = H*x(k) + v(k)
    let f = Array2::from_shape_vec((2, 2), vec![1.0, 0.05, 0.0, 1.0])
        .map_err(|e| SignalError::ValueError(e.to_string()))?;
    let h = Array2::from_shape_vec((1, 2), vec![1.0, 0.0])
        .map_err(|e| SignalError::ValueError(e.to_string()))?;

    // Initial state
    let initial_x = Array1::from_vec(vec![noisy_signal[0], 0.0]);

    // Configure Kalman filter
    let mut config = kalman::KalmanConfig::default();
    config.process_noise_scale = 1e-3;
    config.measurement_noise_scale = noise_level.powi(2);

    // Apply Kalman filter
    let filtered_states = kalman::kalman_filter(&noisy_signal, &f, &h, Some(initial_x), &config)?;

    // Extract position component
    let filtered_signal = filtered_states.slice(s![.., 0]).to_owned();

    // Apply optimal smoother
    let smoothed_signal = kalman::kalman_smooth(&noisy_signal, &f, &h, &config)?;

    // Calculate error metrics
    let filtered_mse = filtered_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&f, &t)| (f - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let smoothed_mse = smoothed_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&s, &t)| (s - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let noisy_mse = noisy_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&n, &t)| (n - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("Noisy signal MSE: {:.6}", noisy_mse);
    println!("Filtered signal MSE: {:.6}", filtered_mse);
    println!("Smoothed signal MSE: {:.6}", smoothed_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_basic.csv",
        &[
            ("True", &true_signal),
            ("Noisy", &noisy_signal),
            ("Filtered", &filtered_signal),
            ("Smoothed", &smoothed_signal),
        ],
    )?;

    Ok(())
}

/// Extended Kalman filter for nonlinear systems
#[allow(dead_code)]
fn extended_kalman_filtering() -> SignalResult<()> {
    println!("Extended Kalman Filtering Example");

    // Generate a nonlinear system with sinusoidal dynamics
    let n_samples = 200;
    let dt = 0.1;

    // State transition function:
    // x1(k+1) = x1(k) + dt * x2(k)
    // x2(k+1) = x2(k) + dt * (-0.1 * x2(k) - sin(x1(k)))
    let f_func = |x: &Array1<f64>| -> Array1<f64> {
        let mut x_new = Array1::zeros(2);
        x_new[0] = x[0] + dt * x[1];
        x_new[1] = x[1] + dt * (-0.1 * x[1] - (x[0]).sin());
        x_new
    };

    // Measurement function (nonlinear): z = x1^2
    let h_func = |x: &Array1<f64>| -> Array1<f64> { Array1::from_vec(vec![x[0].powi(2)]) };

    // Jacobian of state transition function
    let f_jacobian = |x: &Array1<f64>| -> Array2<f64> {
        Array2::from_shape_vec((2, 2), vec![1.0, dt, -dt * (x[0]).cos(), 1.0 - 0.1 * dt]).unwrap()
    };

    // Jacobian of measurement function
    let h_jacobian = |x: &Array1<f64>| -> Array2<f64> {
        Array2::from_shape_vec((1, 2), vec![2.0 * x[0], 0.0]).unwrap()
    };

    // Generate true state trajectory
    let mut x_true = Array1::from_vec(vec![0.0, 1.0]);
    let mut true_states = Vec::with_capacity(n_samples);
    let mut true_measurements = Vec::with_capacity(n_samples);

    for _ in 0..n_samples {
        true_states.push(x_true.clone());
        true_measurements.push(h_func(&x_true)[0]);
        x_true = f_func(&x_true);
    }

    // Convert to Array1
    let true_states_x = Array1::from_vec(true_states.iter().map(|x| x[0]).collect());
    let true_states_v = Array1::from_vec(true_states.iter().map(|x| x[1]).collect());
    let true_measurements = Array1::from_vec(true_measurements);

    // Add noise to measurements
    let noise_level = 0.2;
    let mut rng = rng();
    let normal = Normal::new(0.0, noise_level).unwrap();

    let noisy_measurements = true_measurements.mapv(|x| x + normal.sample(&mut rng));

    // Create measurement array for EKF
    let mut z = Array2::zeros((n_samples, 1));
    for i in 0..n_samples {
        z[[i, 0]] = noisy_measurements[i];
    }

    // Configure EKF
    let mut config = kalman::KalmanConfig::default();
    config.process_noise_scale = 1e-2;
    config.measurement_noise_scale = noise_level.powi(2);

    // Initial state estimate
    let initial_x = Array1::from_vec(vec![0.1, 0.9]);

    // Apply Extended Kalman Filter
    let ekf_states = kalman::extended_kalman_filter(
        &z, f_func, h_func, f_jacobian, h_jacobian, initial_x, &config,
    )?;

    // Extract state components
    let ekf_states_x = ekf_states.slice(s![.., 0]).to_owned();
    let ekf_states_v = ekf_states.slice(s![.., 1]).to_owned();

    // Calculate error metrics
    let position_mse = ekf_states_x
        .iter()
        .zip(true_states_x.iter())
        .map(|(&e, &t)| (e - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let velocity_mse = ekf_states_v
        .iter()
        .zip(true_states_v.iter())
        .map(|(&e, &t)| (e - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("EKF position MSE: {:.6}", position_mse);
    println!("EKF velocity MSE: {:.6}", velocity_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_ekf_position.csv",
        &[("True", &true_states_x), ("EKF", &ekf_states_x)],
    )?;

    export_to_csv(
        "kalman_ekf_velocity.csv",
        &[("True", &true_states_v), ("EKF", &ekf_states_v)],
    )?;

    export_to_csv(
        "kalman_ekf_measurement.csv",
        &[("True", &true_measurements), ("Noisy", &noisy_measurements)],
    )?;

    Ok(())
}

/// Unscented Kalman filter for nonlinear systems
#[allow(dead_code)]
fn unscented_kalman_filtering() -> SignalResult<()> {
    println!("Unscented Kalman Filtering Example");

    // Generate a nonlinear system with sinusoidal dynamics (same as EKF example)
    let n_samples = 200;
    let dt = 0.1;

    // State transition function
    let f_func = |x: &Array1<f64>| -> Array1<f64> {
        let mut x_new = Array1::zeros(2);
        x_new[0] = x[0] + dt * x[1];
        x_new[1] = x[1] + dt * (-0.1 * x[1] - (x[0]).sin());
        x_new
    };

    // Measurement function (nonlinear): z = x1^2
    let h_func = |x: &Array1<f64>| -> Array1<f64> { Array1::from_vec(vec![x[0].powi(2)]) };

    // Generate true state trajectory
    let mut x_true = Array1::from_vec(vec![0.0, 1.0]);
    let mut true_states = Vec::with_capacity(n_samples);
    let mut true_measurements = Vec::with_capacity(n_samples);

    for _ in 0..n_samples {
        true_states.push(x_true.clone());
        true_measurements.push(h_func(&x_true)[0]);
        x_true = f_func(&x_true);
    }

    // Convert to Array1
    let true_states_x = Array1::from_vec(true_states.iter().map(|x| x[0]).collect());
    let true_states_v = Array1::from_vec(true_states.iter().map(|x| x[1]).collect());
    let true_measurements = Array1::from_vec(true_measurements);

    // Add noise to measurements
    let noise_level = 0.2;
    let mut rng = rng();
    let normal = Normal::new(0.0, noise_level).unwrap();

    let noisy_measurements = true_measurements.mapv(|x| x + normal.sample(&mut rng));

    // Create measurement array for UKF
    let mut z = Array2::zeros((n_samples, 1));
    for i in 0..n_samples {
        z[[i, 0]] = noisy_measurements[i];
    }

    // Configure UKF
    let mut config = kalman::KalmanConfig::default();
    config.process_noise_scale = 1e-2;
    config.measurement_noise_scale = noise_level.powi(2);

    // Initial state estimate
    let initial_x = Array1::from_vec(vec![0.1, 0.9]);

    // UKF parameters
    let ukf_config = kalman::UkfConfig {
        alpha: 0.1, // Small alpha for high concentration around mean
        beta: 2.0,  // Optimal for Gaussian distributions
        kappa: 0.0, // Secondary scaling parameter
    };

    // Apply Unscented Kalman Filter
    let ukf_states =
        kalman::unscented_kalman_filter(&z, f_func, h_func, initial_x, &config, Some(ukf_config))?;

    // Extract state components
    let ukf_states_x = ukf_states.slice(s![.., 0]).to_owned();
    let ukf_states_v = ukf_states.slice(s![.., 1]).to_owned();

    // Calculate error metrics
    let position_mse = ukf_states_x
        .iter()
        .zip(true_states_x.iter())
        .map(|(&u, &t)| (u - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let velocity_mse = ukf_states_v
        .iter()
        .zip(true_states_v.iter())
        .map(|(&u, &t)| (u - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("UKF position MSE: {:.6}", position_mse);
    println!("UKF velocity MSE: {:.6}", velocity_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_ukf_position.csv",
        &[("True", &true_states_x), ("UKF", &ukf_states_x)],
    )?;

    export_to_csv(
        "kalman_ukf_velocity.csv",
        &[("True", &true_states_v), ("UKF", &ukf_states_v)],
    )?;

    Ok(())
}

/// Kalman filter for signal denoising
#[allow(dead_code)]
fn kalman_denoising() -> SignalResult<()> {
    println!("Kalman Denoising Example");

    // Generate a test signal with different noise characteristics in different regions
    let n_samples = 300;

    // Create piecewise signal with jumps and smooth regions
    let mut true_signal = Array1::zeros(n_samples);

    for i in 0..n_samples {
        if i < 100 {
            // Sine wave
            true_signal[i] = (i as f64 * 0.1).sin();
        } else if i < 200 {
            // Step function
            true_signal[i] = 1.0;
        } else {
            // Quadratic
            let x = (i - 200) as f64 / 100.0;
            true_signal[i] = x * x - 0.5;
        }
    }

    // Add noise
    let noise_level = 0.2;
    let mut rng = rng();
    let normal = Normal::new(0.0, noise_level).unwrap();

    let noisy_signal = true_signal.mapv(|x| x + normal.sample(&mut rng));

    // Apply different denoising methods

    // 1. Basic Kalman filter for denoising
    let denoised_basic =
        kalman::kalman_denoise_1d(&noisy_signal, Some(1e-4), Some(noise_level.powi(2)))?;

    // 2. Estimate noise parameters from the signal
    let (process_var, measurement_var) = kalman::estimate_noise_parameters(&noisy_signal, 10)?;
    println!("Estimated process variance: {:.6}", process_var);
    println!("Estimated measurement variance: {:.6}", measurement_var);

    let denoised_adaptive =
        kalman::kalman_denoise_1d(&noisy_signal, Some(process_var), Some(measurement_var))?;

    // 3. Robust Kalman filtering
    let denoised_robust = kalman::robust_kalman_filter(
        &noisy_signal,
        3.0, // outlier threshold
    )?;

    // Calculate error metrics
    let noisy_mse = noisy_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&n, &t)| (n - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let basic_mse = denoised_basic
        .iter()
        .zip(true_signal.iter())
        .map(|(&d, &t)| (d - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let adaptive_mse = denoised_adaptive
        .iter()
        .zip(true_signal.iter())
        .map(|(&d, &t)| (d - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let robust_mse = denoised_robust
        .iter()
        .zip(true_signal.iter())
        .map(|(&d, &t)| (d - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("Noisy signal MSE: {:.6}", noisy_mse);
    println!("Basic Kalman denoising MSE: {:.6}", basic_mse);
    println!("Adaptive Kalman denoising MSE: {:.6}", adaptive_mse);
    println!("Robust Kalman denoising MSE: {:.6}", robust_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_denoising.csv",
        &[
            ("True", &true_signal),
            ("Noisy", &noisy_signal),
            ("Basic", &denoised_basic),
            ("Adaptive", &denoised_adaptive),
            ("Robust", &denoised_robust),
        ],
    )?;

    Ok(())
}

/// Example of adaptive Kalman filtering for time-varying noise
#[allow(dead_code)]
fn adaptive_kalman_filtering() -> SignalResult<()> {
    println!("Adaptive Kalman Filtering Example");

    // Generate a signal with time-varying noise
    let n_samples = 300;

    // Create sine wave signal
    let true_signal = Array1::linspace(0.0, 15.0, n_samples).mapv(|t: f64| (t * 0.5).sin());

    // Add time-varying noise
    let mut noisy_signal = true_signal.clone();
    let mut rng = rng();

    for i in 0..n_samples {
        // Noise variance increases with time
        let noise_level = 0.1 + (i as f64 / n_samples as f64) * 0.5;
        let normal = Normal::new(0.0, noise_level).unwrap();
        noisy_signal[i] += normal.sample(&mut rng);
    }

    // Apply standard Kalman filter
    let standard_filtered = kalman::kalman_denoise_1d(
        &noisy_signal,
        Some(1e-4),
        Some(0.3_f64.powi(2)), // Fixed noise variance
    )?;

    // Apply adaptive Kalman filter
    let adaptive_filtered = kalman::adaptive_kalman_filter(
        &noisy_signal,
        15,   // Adaptive window size
        0.98, // Forgetting factor
    )?;

    // Calculate error metrics
    let noisy_mse = noisy_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&n, &t)| (n - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let standard_mse = standard_filtered
        .iter()
        .zip(true_signal.iter())
        .map(|(&s, &t)| (s - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let adaptive_mse = adaptive_filtered
        .iter()
        .zip(true_signal.iter())
        .map(|(&a, &t)| (a - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("Noisy signal MSE: {:.6}", noisy_mse);
    println!("Standard Kalman MSE: {:.6}", standard_mse);
    println!("Adaptive Kalman MSE: {:.6}", adaptive_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_adaptive.csv",
        &[
            ("True", &true_signal),
            ("Noisy", &noisy_signal),
            ("Standard", &standard_filtered),
            ("Adaptive", &adaptive_filtered),
        ],
    )?;

    Ok(())
}

/// Example of robust Kalman filtering for signals with outliers
#[allow(dead_code)]
fn robust_kalman_filtering() -> SignalResult<()> {
    println!("Robust Kalman Filtering Example");

    // Generate a signal with outliers
    let n_samples = 300;
    let amplitude = 1.0;
    let frequency = 0.5;
    let noise_level = 0.2;
    let outlier_prob = 0.05; // 5% chance of outlier
    let outlier_scale = 5.0; // 5x regular noise

    let true_signal = Array1::linspace(0.0, 10.0, n_samples)
        .mapv(|t| amplitude * (2.0 * PI * frequency * t).sin());

    let noisy_signal = generate_noisy_sine(
        n_samples,
        amplitude,
        frequency,
        noise_level,
        Some(outlier_prob),
        Some(outlier_scale),
    );

    // Apply standard Kalman filter
    let standard_filtered =
        kalman::kalman_denoise_1d(&noisy_signal, Some(1e-4), Some(noise_level.powi(2)))?;

    // Apply robust Kalman filter
    let robust_filtered = kalman::robust_kalman_filter(
        &noisy_signal,
        3.0, // outlier threshold (3-sigma)
    )?;

    // Calculate error metrics
    let noisy_mse = noisy_signal
        .iter()
        .zip(true_signal.iter())
        .map(|(&n, &t)| (n - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let standard_mse = standard_filtered
        .iter()
        .zip(true_signal.iter())
        .map(|(&s, &t)| (s - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    let robust_mse = robust_filtered
        .iter()
        .zip(true_signal.iter())
        .map(|(&r, &t)| (r - t).powi(2))
        .sum::<f64>()
        / n_samples as f64;

    println!("Noisy signal MSE: {:.6}", noisy_mse);
    println!("Standard Kalman MSE: {:.6}", standard_mse);
    println!("Robust Kalman MSE: {:.6}", robust_mse);

    // Export data for plotting
    export_to_csv(
        "kalman_robust.csv",
        &[
            ("True", &true_signal),
            ("Noisy", &noisy_signal),
            ("Standard", &standard_filtered),
            ("Robust", &robust_filtered),
        ],
    )?;

    Ok(())
}