// Advanced Enhanced Lomb-Scargle Validation Example
//
// This example demonstrates the comprehensive Advanced validation suite for
// Lomb-Scargle periodogram, including SciPy comparison, SIMD validation,
// memory profiling, and statistical validation.
use scirs2_signal::{generate_advanced_lombscargle_report, run_advanced_lombscargle_validation};
#[allow(dead_code)]
fn main() -> Result<(), Box<dyn std::error::Error>> {
println!("š Advanced Enhanced Lomb-Scargle Validation Suite");
println!("==================================================");
println!("\nš¬ Initializing comprehensive validation...");
println!("This validation includes:");
println!(" š Comprehensive accuracy testing");
println!(" š SciPy reference comparison");
println!(" ā” Complete SIMD validation");
println!(" š¾ Memory profiling");
println!(" š Statistical validation");
println!(" ā±ļø Performance regression detection");
// Run the comprehensive Advanced validation
println!("\nš Running Advanced validation suite...");
let validation_result = run_advanced_lombscargle_validation()?;
// Generate and display the comprehensive report
let report = generate_advanced_lombscargle_report(&validation_result);
println!("\n{}", report);
// Detailed analysis with colored output
println!("\nšÆ **EXECUTIVE SUMMARY**");
println!("========================");
let quality_icon = if validation_result.quality_score >= 95.0 {
"š"
} else if validation_result.quality_score >= 85.0 {
"ā"
} else if validation_result.quality_score >= 75.0 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Overall Quality Score: {:.1}/100",
quality_icon, validation_result.quality_score
);
// Accuracy Analysis
println!("\nš **ACCURACY ANALYSIS**");
println!("-------------------------");
let freq_accuracy = validation_result
.accuracy_validation
.frequency_accuracy
.single_tone_accuracy;
let freq_icon = if freq_accuracy < 0.01 {
"ā
"
} else if freq_accuracy < 0.05 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Frequency Estimation: {:.4} relative error",
freq_icon, freq_accuracy
);
let power_accuracy = validation_result
.accuracy_validation
.power_accuracy
.amplitude_linearity;
let power_icon = if power_accuracy > 0.95 {
"ā
"
} else if power_accuracy > 0.9 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Power Estimation: {:.3} linearity",
power_icon, power_accuracy
);
let phase_coherence = validation_result
.accuracy_validation
.phase_coherence
.phase_preservation;
let phase_icon = if phase_coherence > 0.95 {
"ā
"
} else if phase_coherence > 0.9 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Phase Coherence: {:.3} preservation",
phase_icon, phase_coherence
);
// SciPy Comparison Analysis
println!("\nš **SCIPY COMPATIBILITY**");
println!("---------------------------");
let scipy_corr = validation_result.scipy_comparison.correlation;
let scipy_icon = if scipy_corr > 0.99 {
"ā
"
} else if scipy_corr > 0.95 {
"ā ļø"
} else {
"ā"
};
println!("{} Correlation: {:.4}", scipy_icon, scipy_corr);
let max_error = validation_result.scipy_comparison.max_relative_error;
let error_icon = if max_error < 0.001 {
"ā
"
} else if max_error < 0.01 {
"ā ļø"
} else {
"ā"
};
println!("{} Max Relative Error: {:.2e}", error_icon, max_error);
let mean_error = validation_result.scipy_comparison.mean_relative_error;
let mean_icon = if mean_error < 0.0001 {
"ā
"
} else if mean_error < 0.001 {
"ā ļø"
} else {
"ā"
};
println!("{} Mean Relative Error: {:.2e}", mean_icon, mean_error);
// SIMD Performance Analysis
println!("\nā” **SIMD OPTIMIZATION**");
println!("-----------------------");
let simd_speedup = validation_result.simd_validation.performance_improvement;
let speedup_icon = if simd_speedup > 2.0 {
"š"
} else if simd_speedup > 1.5 {
"ā”"
} else if simd_speedup > 1.1 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Performance Improvement: {:.1}x",
speedup_icon, simd_speedup
);
let simd_accuracy = validation_result
.simd_validation
.accuracy_comparison
.correlation_coefficient;
let simd_acc_icon = if simd_accuracy > 0.9999 {
"ā
"
} else if simd_accuracy > 0.999 {
"ā ļø"
} else {
"ā"
};
println!(
"{} SIMD Accuracy: {:.6} correlation",
simd_acc_icon, simd_accuracy
);
let platform_util = validation_result
.simd_validation
.platform_utilization
.vector_width_utilization;
let util_icon = if platform_util > 0.8 {
"ā
"
} else if platform_util > 0.6 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Platform Utilization: {:.1}%",
util_icon,
platform_util * 100.0
);
// Memory Analysis
println!("\nš¾ **MEMORY EFFICIENCY**");
println!("------------------------");
let peak_memory = validation_result.memory_profiling.peak_memory_mb;
let memory_icon = if peak_memory < 20.0 {
"ā
"
} else if peak_memory < 50.0 {
"ā ļø"
} else {
"ā"
};
println!("{} Peak Memory: {:.1} MB", memory_icon, peak_memory);
let cache_hit = validation_result
.memory_profiling
.efficiency_metrics
.cache_hit_ratio;
let cache_icon = if cache_hit > 0.9 {
"ā
"
} else if cache_hit > 0.8 {
"ā ļø"
} else {
"ā"
};
println!("{} Cache Hit Ratio: {:.1}%", cache_icon, cache_hit * 100.0);
let memory_per_sample = validation_result
.memory_profiling
.efficiency_metrics
.memory_per_sample;
let mps_icon = if memory_per_sample < 0.1 {
"ā
"
} else if memory_per_sample < 0.5 {
"ā ļø"
} else {
"ā"
};
println!(
"{} Memory per Sample: {:.3} KB",
mps_icon,
memory_per_sample * 1024.0
);
// Statistical Validation
println!("\nš **STATISTICAL VALIDATION**");
println!("-----------------------------");
let fap_accuracy = validation_result
.statistical_validation
.false_alarm_validation
.fap_accuracy;
let fap_icon = if fap_accuracy > 0.95 {
"ā
"
} else if fap_accuracy > 0.9 {
"ā ļø"
} else {
"ā"
};
println!(
"{} False Alarm Probability: {:.1}% accuracy",
fap_icon,
fap_accuracy * 100.0
);
let psd_comparison = validation_result
.statistical_validation
.psd_theoretical_comparison
.white_noise_comparison;
let psd_icon = if psd_comparison > 0.9 {
"ā
"
} else if psd_comparison > 0.8 {
"ā ļø"
} else {
"ā"
};
println!("{} PSD Theoretical Match: {:.3}", psd_icon, psd_comparison);
// Performance Regression
println!("\nā±ļø **PERFORMANCE REGRESSION**");
println!("-----------------------------");
if validation_result.performance_regression.regression_detected {
println!("ā Performance regression detected!");
println!(
" š Time trend: {:.2}%",
validation_result
.performance_regression
.trend_analysis
.time_trend_slope
* 100.0
);
println!(
" š Memory trend: {:.2}%",
validation_result
.performance_regression
.trend_analysis
.memory_trend_slope
* 100.0
);
} else {
println!("ā
No performance regression detected");
println!(
" š Time improvement: {:.1}%",
validation_result
.performance_regression
.trend_analysis
.time_trend_slope
* 100.0
);
println!(
" š Memory improvement: {:.1}%",
validation_result
.performance_regression
.trend_analysis
.memory_trend_slope
* 100.0
);
}
// Critical Issues Summary
if !validation_result.issues.is_empty() {
println!("\nšØ **CRITICAL ISSUES REQUIRING ATTENTION**");
println!("==========================================");
for (i, issue) in validation_result.issues.iter().enumerate() {
println!("{}. ā {}", i + 1, issue);
}
} else {
println!("\nā
**NO CRITICAL ISSUES DETECTED**");
println!("==================================");
println!("Implementation passes all critical validation checks!");
}
// Recommendations Summary
if !validation_result.recommendations.is_empty() {
println!("\nš” **OPTIMIZATION OPPORTUNITIES**");
println!("=================================");
for (i, recommendation) in validation_result.recommendations.iter().enumerate() {
println!("{}. š§ {}", i + 1, recommendation);
}
}
// Final Assessment
println!("\nšÆ **FINAL ASSESSMENT**");
println!("=======================");
match validation_result.quality_score as u32 {
95..=100 => {
println!("š **EXCEPTIONAL**: This implementation exceeds industry standards!");
println!(" Ready for production use in demanding applications.");
}
85..=94 => {
println!("ā **EXCELLENT**: High-quality implementation with minor optimization opportunities.");
println!(" Suitable for most production applications.");
}
75..=84 => {
println!("ā ļø **GOOD**: Functional implementation with room for improvement.");
println!(" Consider addressing recommendations before production use.");
}
0..=74 => {
println!("ā **NEEDS WORK**: Significant issues require attention.");
println!(" Please address critical issues before production deployment.");
}
_ => unreachable!(),
}
println!("\nš Advanced validation complete!");
println!(" š Full report generated above");
println!(
" š Quality score: {:.1}/100",
validation_result.quality_score
);
println!(
" š {} tests completed",
5 + validation_result
.statistical_validation
.false_alarm_validation
.confidence_level_validation
.len()
);
Ok(())
}