Struct malachite_float::Float
source · pub struct Float(/* private fields */);Expand description
A floating-point number.
Floats are currently experimental. They are missing many important functions. However, the
functions that are currently implemented are thoroughly tested and documented, with the
exception of string conversion functions. The current string conversions are incomplete and
will be changed in the future to match MPFR’s behavior.
Floats are similar to the primitive floats defined by the IEEE 754 standard. They include
NaN, positive and negative infinity, and positive and negative zero. There is only one NaN;
there is no concept of a NaN payload.
All the finite Floats are dyadic rationals (rational numbers whose denominator is a power of
2). A finite Float consists of several fields:
- a sign, which denotes whether the
Floatis positive or negative; - a significand, which is a
Naturalnumber whose value is equal to theFloat’s absolute value multiplied by a power of 2; - an exponent, which is one more than the floor of the base-2 logarithm of the
Float’s absolute value; - and finally, a precision, which is greater than zero and indicates the number of significant
bits. It is common to think of a
Floatas an approximation to some real number, and the precision indicates how good the approximation is intended to be.
Floats inherit some odd behavior from the IEEE 754 standard regarding comparison. A NaN is
not equal to any Float, including itself. Positive and negative zero compare as equal,
despite being two distinct values. Additionally, (and this is not IEEE 754’s fault), Floats
with different precisions compare as equal if they represent the same numeric value.
In many cases, the above behavior is unsatisfactory, so the ComparableFloat and
ComparableFloat wrappers are provided. See their documentation for a description of their
comparison behavior.
In documentation, we will use the ‘$=$’ sign to mean that two Floats are identical, writing
things like $-\text{NaN}=\text{NaN}$ and $-(0.0) = -0.0$.
The Float type is designed to be very similar to the mpfr_t type in
MPFR, and all Malachite functions produce exactly the same result as
their counterparts in MPFR, unless otherwise noted.
Here are the structural difference between Float and mpfr_t:
Floatcan only represent a singleNaNvalue, with no sign or payload.- Only finite, nonzero
Floats have a significand, precision, and exponent. For otherFloats, these concepts are undefined. In particular, unlikempfr_tzeros,Floatzeros do not have a precision. - The types of
mpfr_tcomponents are configuration- and platform-dependent. The types ofFloatcomponents are platform-independent, although theLimbtype is configuration-dependent: it isu64by default, but may be changed tou32using the--32_bit_limbscompiler flag. The type of the exponent is alwaysi64and the type of the precision is alwaysu64. TheLimbtype only affects functions that extract the raw significand. All other functions have the same behavior when compiled with either type.
Floats whose precision is 64 bits or less can be represented without any memory allocation.
(Unless Malachite is compiled with 32_bit_limbs, in which case the limit is 32).
Implementations§
source§impl Float
impl Float
sourcepub fn abs_negative_zero(self) -> Float
pub fn abs_negative_zero(self) -> Float
If self is negative zero, returns positive zero; otherwise, returns self, taking self
by value.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(
ComparableFloat(Float::NAN.abs_negative_zero()),
ComparableFloat(Float::NAN)
);
assert_eq!(Float::INFINITY.abs_negative_zero(), Float::INFINITY);
assert_eq!(Float::NEGATIVE_INFINITY.abs_negative_zero(), Float::NEGATIVE_INFINITY);
assert_eq!(
ComparableFloat(Float::ZERO.abs_negative_zero()),
ComparableFloat(Float::ZERO)
);
assert_eq!(
ComparableFloat(Float::NEGATIVE_ZERO.abs_negative_zero()),
ComparableFloat(Float::ZERO)
);
assert_eq!(Float::ONE.abs_negative_zero(), Float::ONE);
assert_eq!(Float::NEGATIVE_ONE.abs_negative_zero(), Float::NEGATIVE_ONE);sourcepub fn abs_negative_zero_ref(&self) -> Float
pub fn abs_negative_zero_ref(&self) -> Float
If self is negative zero, returns positive zero; otherwise, returns self, taking self
by reference.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(
ComparableFloat(Float::NAN.abs_negative_zero_ref()),
ComparableFloat(Float::NAN)
);
assert_eq!(Float::INFINITY.abs_negative_zero_ref(), Float::INFINITY);
assert_eq!(Float::NEGATIVE_INFINITY.abs_negative_zero_ref(), Float::NEGATIVE_INFINITY);
assert_eq!(
ComparableFloat(Float::ZERO.abs_negative_zero_ref()),
ComparableFloat(Float::ZERO)
);
assert_eq!(
ComparableFloat(Float::NEGATIVE_ZERO.abs_negative_zero_ref()),
ComparableFloat(Float::ZERO)
);
assert_eq!(Float::ONE.abs_negative_zero_ref(), Float::ONE);
assert_eq!(Float::NEGATIVE_ONE.abs_negative_zero_ref(), Float::NEGATIVE_ONE);sourcepub fn abs_negative_zero_assign(&mut self)
pub fn abs_negative_zero_assign(&mut self)
If self is negative zero, replaces it with positive zero; otherwise, does nothing.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
let mut x = Float::NAN;
x.abs_negative_zero_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::NAN));
let mut x = Float::INFINITY;
x.abs_negative_zero_assign();
assert_eq!(x, Float::INFINITY);
let mut x = Float::NEGATIVE_INFINITY;
x.abs_negative_zero_assign();
assert_eq!(x, Float::NEGATIVE_INFINITY);
let mut x = Float::ZERO;
x.abs_negative_zero_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::ZERO));
let mut x = Float::NEGATIVE_ZERO;
x.abs_negative_zero_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::ZERO));
let mut x = Float::ONE;
x.abs_negative_zero_assign();
assert_eq!(x, Float::ONE);
let mut x = Float::NEGATIVE_ONE;
x.abs_negative_zero_assign();
assert_eq!(x, Float::NEGATIVE_ONE);source§impl Float
impl Float
sourcepub fn power_of_2_prec(pow: i64, prec: u64) -> Float
pub fn power_of_2_prec(pow: i64, prec: u64) -> Float
Raises 2 to an integer power, returning a Float with the specified precision.
If you need a Float with precision 1, then the
PowerOfTwo implementation may be
used instead.
$f(k) = 2^k$,
and the result has precision prec.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
use malachite_float::Float;
assert_eq!(Float::power_of_2_prec(0, 1).to_string(), "1.0");
assert_eq!(Float::power_of_2_prec(0, 10).to_string(), "1.0");
assert_eq!(Float::power_of_2_prec(0, 100).to_string(), "1.0");
assert_eq!(Float::power_of_2_prec(100, 1).to_string(), "1.0e30");
assert_eq!(Float::power_of_2_prec(100, 10).to_string(), "1.268e30");
assert_eq!(
Float::power_of_2_prec(100, 100).to_string(),
"1267650600228229401496703205376.0"
);
assert_eq!(Float::power_of_2_prec(-100, 1).to_string(), "8.0e-31");
assert_eq!(Float::power_of_2_prec(-100, 10).to_string(), "7.89e-31");
assert_eq!(
Float::power_of_2_prec(-100, 100).to_string(),
"7.88860905221011805411728565283e-31"
);source§impl Float
impl Float
sourcepub const fn is_nan(&self) -> bool
pub const fn is_nan(&self) -> bool
Determines whether a Float is NaN.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.is_nan(), true);
assert_eq!(Float::ONE.is_nan(), false);sourcepub const fn is_finite(&self) -> bool
pub const fn is_finite(&self) -> bool
Determines whether a Float is finite.
NaN is not finite.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.is_finite(), false);
assert_eq!(Float::INFINITY.is_finite(), false);
assert_eq!(Float::ONE.is_finite(), true);sourcepub const fn is_infinite(&self) -> bool
pub const fn is_infinite(&self) -> bool
Determines whether a Float is infinite.
NaN is not infinite.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.is_infinite(), false);
assert_eq!(Float::INFINITY.is_infinite(), true);
assert_eq!(Float::ONE.is_infinite(), false);sourcepub const fn is_positive_zero(&self) -> bool
pub const fn is_positive_zero(&self) -> bool
Determines whether a Float is positive zero.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_positive_zero(), false);
assert_eq!(Float::INFINITY.is_positive_zero(), false);
assert_eq!(Float::ONE.is_positive_zero(), false);
assert_eq!(Float::ZERO.is_positive_zero(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_positive_zero(), false);sourcepub const fn is_negative_zero(&self) -> bool
pub const fn is_negative_zero(&self) -> bool
Determines whether a Float is negative zero.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_negative_zero(), false);
assert_eq!(Float::INFINITY.is_negative_zero(), false);
assert_eq!(Float::ONE.is_negative_zero(), false);
assert_eq!(Float::ZERO.is_negative_zero(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_negative_zero(), true);sourcepub const fn is_zero(&self) -> bool
pub const fn is_zero(&self) -> bool
Determines whether a Float is zero (positive or negative).
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_zero(), false);
assert_eq!(Float::INFINITY.is_zero(), false);
assert_eq!(Float::ONE.is_zero(), false);
assert_eq!(Float::ZERO.is_zero(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_zero(), true);sourcepub const fn is_normal(&self) -> bool
pub const fn is_normal(&self) -> bool
Determines whether a Float is normal, that is, finite and nonzero.
There is no notion of subnormal Floats.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_normal(), false);
assert_eq!(Float::INFINITY.is_normal(), false);
assert_eq!(Float::ZERO.is_normal(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_normal(), false);
assert_eq!(Float::ONE.is_normal(), true);sourcepub const fn is_sign_positive(&self) -> bool
pub const fn is_sign_positive(&self) -> bool
Determines whether a Float’s sign is positive.
A NaN has no sign, so this function returns false when given a NaN.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::Float;
assert_eq!(Float::NAN.is_sign_positive(), false);
assert_eq!(Float::INFINITY.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_INFINITY.is_sign_positive(), false);
assert_eq!(Float::ZERO.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_sign_positive(), false);
assert_eq!(Float::ONE.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_ONE.is_sign_positive(), false);sourcepub const fn is_sign_negative(&self) -> bool
pub const fn is_sign_negative(&self) -> bool
Determines whether a Float’s sign is negative.
A NaN has no sign, so this function returns false when given a NaN.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::Float;
assert_eq!(Float::NAN.is_sign_negative(), false);
assert_eq!(Float::INFINITY.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_INFINITY.is_sign_negative(), true);
assert_eq!(Float::ZERO.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_sign_negative(), true);
assert_eq!(Float::ONE.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_ONE.is_sign_negative(), true);sourcepub const fn classify(&self) -> FpCategory
pub const fn classify(&self) -> FpCategory
Classifies a Float into one of several categories.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::Float;
use std::num::FpCategory;
assert_eq!(Float::NAN.classify(), FpCategory::Nan);
assert_eq!(Float::INFINITY.classify(), FpCategory::Infinite);
assert_eq!(Float::NEGATIVE_INFINITY.classify(), FpCategory::Infinite);
assert_eq!(Float::ZERO.classify(), FpCategory::Zero);
assert_eq!(Float::NEGATIVE_ZERO.classify(), FpCategory::Zero);
assert_eq!(Float::ONE.classify(), FpCategory::Normal);
assert_eq!(Float::NEGATIVE_ONE.classify(), FpCategory::Normal);sourcepub fn into_non_nan(self) -> Option<Float>
pub fn into_non_nan(self) -> Option<Float>
Turns a NaN into a None and wraps any non-NaN Float with a Some. The Float is
taken by value.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.into_non_nan(), None);
assert_eq!(Float::INFINITY.into_non_nan(), Some(Float::INFINITY));
assert_eq!(Float::ZERO.into_non_nan(), Some(Float::ZERO));
assert_eq!(Float::NEGATIVE_ZERO.into_non_nan(), Some(Float::NEGATIVE_ZERO));
assert_eq!(Float::ONE.into_non_nan(), Some(Float::ONE));sourcepub fn to_non_nan(&self) -> Option<Float>
pub fn to_non_nan(&self) -> Option<Float>
Turns a NaN into a None and wraps any non-NaN Float with a Some. The Float is
taken by reference.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.to_non_nan(), None);
assert_eq!(Float::INFINITY.to_non_nan(), Some(Float::INFINITY));
assert_eq!(Float::ZERO.to_non_nan(), Some(Float::ZERO));
assert_eq!(Float::NEGATIVE_ZERO.to_non_nan(), Some(Float::NEGATIVE_ZERO));
assert_eq!(Float::ONE.to_non_nan(), Some(Float::ONE));sourcepub fn into_finite(self) -> Option<Float>
pub fn into_finite(self) -> Option<Float>
Turns any Float that’s NaN or infinite into a None and wraps any finite Float
with a Some. The Float is taken by value.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.into_finite(), None);
assert_eq!(Float::INFINITY.into_finite(), None);
assert_eq!(Float::ZERO.into_finite(), Some(Float::ZERO));
assert_eq!(Float::NEGATIVE_ZERO.into_finite(), Some(Float::NEGATIVE_ZERO));
assert_eq!(Float::ONE.into_finite(), Some(Float::ONE));sourcepub fn to_finite(&self) -> Option<Float>
pub fn to_finite(&self) -> Option<Float>
Turns any Float that’s NaN or infinite into a None and wraps any finite Float
with a Some. The Float is taken by reference.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.to_finite(), None);
assert_eq!(Float::INFINITY.to_finite(), None);
assert_eq!(Float::ZERO.to_finite(), Some(Float::ZERO));
assert_eq!(Float::NEGATIVE_ZERO.to_finite(), Some(Float::NEGATIVE_ZERO));
assert_eq!(Float::ONE.to_finite(), Some(Float::ONE));source§impl Float
impl Float
sourcepub fn complexity(&self) -> u64
pub fn complexity(&self) -> u64
Determines a Float’s complexity. The complexity is defined as follows:
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = 1, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \max(|\lfloor \log_2 x\rfloor|, p), $$
where $p$ is the precision of $x$.
Informally, the complexity is proportional to the number of characters you would need to
write the Float out without using exponents.
See also the Float implementation of SignificantBits.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.complexity(), 1);
assert_eq!(Float::ONE.complexity(), 1);
assert_eq!(Float::one_prec(100).complexity(), 100);
assert_eq!(Float::from(std::f64::consts::PI).complexity(), 53);
assert_eq!(Float::power_of_2(100u64).complexity(), 100);
assert_eq!(Float::power_of_2(-100i64).complexity(), 100);source§impl Float
impl Float
sourcepub fn one_prec(prec: u64) -> Float
pub fn one_prec(prec: u64) -> Float
Returns the number 1, with the given precision.
$$ f(p) = 1, $$
and the output has precision $p$.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is p.
Panics
Panics if p is zero.
Examples
use malachite_float::Float;
assert_eq!(Float::one_prec(1), 1);
assert_eq!(Float::one_prec(10), 1);
assert_eq!(Float::one_prec(100), 1);
assert_eq!(Float::one_prec(1).get_prec(), Some(1));
assert_eq!(Float::one_prec(10).get_prec(), Some(10));
assert_eq!(Float::one_prec(100).get_prec(), Some(100));sourcepub fn two_prec(prec: u64) -> Float
pub fn two_prec(prec: u64) -> Float
Returns the number 2, with the given precision.
$$ f(p) = 2, $$
and the output has precision $p$.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is p.
Panics
Panics if p is zero.
Examples
use malachite_float::Float;
assert_eq!(Float::two_prec(1), 2);
assert_eq!(Float::two_prec(10), 2);
assert_eq!(Float::two_prec(100), 2);
assert_eq!(Float::two_prec(1).get_prec(), Some(1));
assert_eq!(Float::two_prec(10).get_prec(), Some(10));
assert_eq!(Float::two_prec(100).get_prec(), Some(100));sourcepub fn negative_one_prec(prec: u64) -> Float
pub fn negative_one_prec(prec: u64) -> Float
Returns the number $-1$, with the given precision.
$$ f(p) = -1, $$
and the output has precision $p$.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is p.
Panics
Panics if p is zero.
Examples
use malachite_float::Float;
assert_eq!(Float::negative_one_prec(1), -1);
assert_eq!(Float::negative_one_prec(10), -1);
assert_eq!(Float::negative_one_prec(100), -1);
assert_eq!(Float::negative_one_prec(1).get_prec(), Some(1));
assert_eq!(Float::negative_one_prec(10).get_prec(), Some(10));
assert_eq!(Float::negative_one_prec(100).get_prec(), Some(100));sourcepub fn one_half_prec(prec: u64) -> Float
pub fn one_half_prec(prec: u64) -> Float
Returns the number 0.5, with the given precision.
$$ f(p) = 0.5, $$
and the output has precision $p$.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is p.
Panics
Panics if p is zero.
Examples
use malachite_float::Float;
assert_eq!(Float::one_half_prec(1), 0.5);
assert_eq!(Float::one_half_prec(10), 0.5);
assert_eq!(Float::one_half_prec(100), 0.5);
assert_eq!(Float::one_half_prec(1).get_prec(), Some(1));
assert_eq!(Float::one_half_prec(10).get_prec(), Some(10));
assert_eq!(Float::one_half_prec(100).get_prec(), Some(100));source§impl Float
impl Float
sourcepub fn to_significand(&self) -> Option<Natural>
pub fn to_significand(&self) -> Option<Natural>
Gets the significand of a Float, taking the Float by value.
The significand is the smallest positive integer which is some power of 2 times the
Float, and whose number of significant bits is a multiple of the limb width. If the
Float is NaN, infinite, or zero, then None is returned.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.to_significand(), None);
assert_eq!(Float::INFINITY.to_significand(), None);
assert_eq!(Float::ZERO.to_significand(), None);
assert_eq!(Float::ONE.to_significand(), Some(Natural::power_of_2(63)));
assert_eq!(
Float::from(std::f64::consts::PI).to_significand().unwrap(),
14488038916154245120u64
);sourcepub fn into_significand(self) -> Option<Natural>
pub fn into_significand(self) -> Option<Natural>
Gets the significand of a Float, taking the Float by reference.
The significand is the smallest positive integer which is some power of 2 times the
Float, and whose number of significant bits is a multiple of the limb width. If the
Float is NaN, infinite, or zero, then None is returned.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.into_significand(), None);
assert_eq!(Float::INFINITY.into_significand(), None);
assert_eq!(Float::ZERO.into_significand(), None);
assert_eq!(Float::ONE.into_significand(), Some(Natural::power_of_2(63)));
assert_eq!(
Float::from(std::f64::consts::PI).into_significand().unwrap(),
14488038916154245120u64
);sourcepub const fn significand_ref(&self) -> Option<&Natural>
pub const fn significand_ref(&self) -> Option<&Natural>
Returns a reference to the significand of a Float.
The significand is the smallest positive integer which is some power of 2 times the
Float, and whose number of significant bits is a multiple of the limb width. If the
Float is NaN, infinite, or zero, then None is returned.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.significand_ref(), None);
assert_eq!(Float::INFINITY.significand_ref(), None);
assert_eq!(Float::ZERO.significand_ref(), None);
assert_eq!(*Float::ONE.significand_ref().unwrap(), Natural::power_of_2(63));
assert_eq!(
*Float::from(std::f64::consts::PI).significand_ref().unwrap(),
14488038916154245120u64
);sourcepub const fn get_exponent(&self) -> Option<i64>
pub const fn get_exponent(&self) -> Option<i64>
Returns a Float’s exponent.
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = \text{None}, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \operatorname{Some}(\lfloor \log_2 x \rfloor + 1). $$
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.get_exponent(), None);
assert_eq!(Float::INFINITY.get_exponent(), None);
assert_eq!(Float::ZERO.get_exponent(), None);
assert_eq!(Float::ONE.get_exponent(), Some(1));
assert_eq!(Float::from(std::f64::consts::PI).get_exponent(), Some(2));
assert_eq!(Float::power_of_2(100u64).get_exponent(), Some(101));
assert_eq!(Float::power_of_2(-100i64).get_exponent(), Some(-99));sourcepub const fn get_prec(&self) -> Option<u64>
pub const fn get_prec(&self) -> Option<u64>
Returns a Float’s precision. The precision is a positive integer denoting how many of
the Float’s bits are significant.
Only Floats that are finite and nonzero have a precision. For other Floats, None
is returned.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.get_prec(), None);
assert_eq!(Float::INFINITY.get_prec(), None);
assert_eq!(Float::ZERO.get_prec(), None);
assert_eq!(Float::ONE.get_prec(), Some(1));
assert_eq!(Float::one_prec(100).get_prec(), Some(100));
assert_eq!(Float::from(std::f64::consts::PI).get_prec(), Some(53));sourcepub fn set_prec_round(&mut self, prec: u64, rm: RoundingMode) -> Ordering
pub fn set_prec_round(&mut self, prec: u64, rm: RoundingMode) -> Ordering
Changes a Float’s precision. If the precision decreases, rounding may be necessary, and
will use the provided RoundingMode.
Returns an Ordering, indicating whether the final value is less than, greater than, or
equal to the original value.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Panics
Panics if prec is zero or if rm is RoundingMode::Exact but setting the desired
precision requires rounding.
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_float::Float;
use std::cmp::Ordering;
let original_x = Float::from(1.0f64 / 3.0);
assert_eq!(original_x.to_string(), "0.33333333333333331");
assert_eq!(original_x.get_prec(), Some(53));
let mut x = original_x.clone();
assert_eq!(x.set_prec_round(100, RoundingMode::Exact), Ordering::Equal);
assert_eq!(x.to_string(), "0.3333333333333333148296162562474");
assert_eq!(x.get_prec(), Some(100));
let mut x = original_x.clone();
assert_eq!(x.set_prec_round(10, RoundingMode::Floor), Ordering::Less);
assert_eq!(x.to_string(), "0.333");
assert_eq!(x.get_prec(), Some(10));
let mut x = original_x.clone();
assert_eq!(x.set_prec_round(10, RoundingMode::Ceiling), Ordering::Greater);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));sourcepub fn set_prec(&mut self, p: u64) -> Ordering
pub fn set_prec(&mut self, p: u64) -> Ordering
Changes a Float’s precision. If the precision decreases, rounding may be necessary, and
RoundingMode::Nearest will be used.
Returns an Ordering, indicating whether the final value is less than, greater than, or
equal to the original value.
To use a different rounding mode, try Float::set_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_float::Float;
use std::cmp::Ordering;
let original_x = Float::from(1.0f64 / 3.0);
assert_eq!(original_x.to_string(), "0.33333333333333331");
assert_eq!(original_x.get_prec(), Some(53));
let mut x = original_x.clone();
assert_eq!(x.set_prec(100), Ordering::Equal);
assert_eq!(x.to_string(), "0.3333333333333333148296162562474");
assert_eq!(x.get_prec(), Some(100));
let mut x = original_x.clone();
assert_eq!(x.set_prec(10), Ordering::Greater);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));source§impl Float
impl Float
sourcepub fn ulp(&self) -> Option<Float>
pub fn ulp(&self) -> Option<Float>
Gets a Float’s ulp (unit in last place, or unit of least precision).
If the Float is positive, its ulp is the distance to the next-largest Float with
the same precision; if it is negative, the next-smallest. (This definition works even if
the Float is the largest in its binade.)
If the Float is NaN, infinite, or zero, then None is returned.
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = \text{None}, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \operatorname{Some}(2^{\lfloor \log_2 x \rfloor-p+1}), $$ where $p$ is the precision of $x$.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeOne, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
assert_eq!(Float::NAN.ulp(), None);
assert_eq!(Float::INFINITY.ulp(), None);
assert_eq!(Float::ZERO.ulp(), None);
let s = Float::ONE.ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0"));
let s = Float::one_prec(100).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("2.0e-30"));
let s = Float::from(std::f64::consts::PI).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("4.0e-16"));
let s = Float::power_of_2(100u64).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0e30"));
let s = Float::power_of_2(-100i64).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("8.0e-31"));
let s = Float::NEGATIVE_ONE.ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0"));sourcepub fn increment(&mut self)
pub fn increment(&mut self)
Increments a Float by its ulp.
See Float::ulp for details. If the Float is equal to the negative of its ulp, it
becomes negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is NaN, infinite, or zero.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeOne, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
let mut x = Float::ONE;
assert_eq!(x.to_string(), "1.0");
x.increment();
assert_eq!(x.to_string(), "2.0");
let mut x = Float::one_prec(100);
assert_eq!(x.to_string(), "1.0");
x.increment();
assert_eq!(x.to_string(), "1.000000000000000000000000000002");
let mut x = Float::from(std::f64::consts::PI);
assert_eq!(x.to_string(), "3.1415926535897931");
x.increment();
assert_eq!(x.to_string(), "3.1415926535897936");
let mut x = Float::power_of_2(100u64);
assert_eq!(x.to_string(), "1.0e30");
x.increment();
assert_eq!(x.to_string(), "3.0e30");
let mut x = Float::power_of_2(-100i64);
assert_eq!(x.to_string(), "8.0e-31");
x.increment();
assert_eq!(x.to_string(), "1.6e-30");
let mut x = Float::NEGATIVE_ONE;
assert_eq!(x.to_string(), "-1.0");
x.increment();
assert_eq!(x.to_string(), "-0.0");sourcepub fn decrement(&mut self)
pub fn decrement(&mut self)
Decrements a Float by its ulp.
See Float::ulp for details. If the Float is equal to its ulp, it becomes positive
zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is NaN, infinite, or zero.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeOne, One, Zero};
use malachite_nz::natural::Natural;
use malachite_float::Float;
let mut x = Float::ONE;
assert_eq!(x.to_string(), "1.0");
x.decrement();
assert_eq!(x.to_string(), "0.0");
let mut x = Float::one_prec(100);
assert_eq!(x.to_string(), "1.0");
x.decrement();
assert_eq!(x.to_string(), "0.999999999999999999999999999998");
let mut x = Float::from(std::f64::consts::PI);
assert_eq!(x.to_string(), "3.1415926535897931");
x.decrement();
assert_eq!(x.to_string(), "3.1415926535897927");
let mut x = Float::power_of_2(100u64);
assert_eq!(x.to_string(), "1.0e30");
x.decrement();
assert_eq!(x.to_string(), "0.0");
let mut x = Float::power_of_2(-100i64);
assert_eq!(x.to_string(), "8.0e-31");
x.decrement();
assert_eq!(x.to_string(), "0.0");
let mut x = Float::NEGATIVE_ONE;
assert_eq!(x.to_string(), "-1.0");
x.decrement();
assert_eq!(x.to_string(), "-2.0");source§impl Float
impl Float
sourcepub fn from_integer_prec_round(
x: Integer,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_integer_prec_round( x: Integer, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts an Integer to a Float, taking the Integer by value. If the Float
is nonzero, it has the specified precision. If rounding is needed, the specified rounding
mode is used. An Ordering is also returned, indicating whether the returned value is
less than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_integer_prec
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
use std::cmp::Ordering;
let (x, o) = Float::from_integer_prec_round(Integer::ZERO, 10, RoundingMode::Exact);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round(
Integer::from(123),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round(Integer::from(123), 4, RoundingMode::Floor);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec_round(
Integer::from(123),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_integer_prec_round(
Integer::from(-123),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "-123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round(Integer::from(-123), 4, RoundingMode::Floor);
assert_eq!(x.to_string(), "-1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec_round(
Integer::from(-123),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "-1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);sourcepub fn from_integer_prec(x: Integer, prec: u64) -> (Float, Ordering)
pub fn from_integer_prec(x: Integer, prec: u64) -> (Float, Ordering)
Converts an Integer to a Float, taking the Integer by value. If the Float
is nonzero, it has the specified precision. An Ordering is also returned, indicating
whether the returned value is less than, equal to, or greater than the original value.
If you want the Float’s precision to be equal to the Integer’s number of
significant bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_integer_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
use std::cmp::Ordering;
let (x, o) = Float::from_integer_prec(Integer::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec(Integer::from(123), 20);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec(Integer::from(123), 4);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec(Integer::from(-123), 20);
assert_eq!(x.to_string(), "-123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec(Integer::from(-123), 4);
assert_eq!(x.to_string(), "-1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);sourcepub fn from_integer_prec_round_ref(
x: &Integer,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_integer_prec_round_ref( x: &Integer, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts an Integer to a Float, taking the Integer by reference. If the
Float is nonzero, it has the specified precision. If rounding is needed, the specified
rounding mode is used. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_integer_prec_ref
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
use std::cmp::Ordering;
let (x, o) = Float::from_integer_prec_round_ref(&Integer::ZERO, 10, RoundingMode::Exact);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(123),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(123),
4,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(123),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(-123),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "-123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(-123),
4,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "-1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec_round_ref(
&Integer::from(-123),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "-1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);sourcepub fn from_integer_prec_ref(x: &Integer, prec: u64) -> (Float, Ordering)
pub fn from_integer_prec_ref(x: &Integer, prec: u64) -> (Float, Ordering)
Converts an Integer to a Float, taking the Integer by reference. If the
Float is nonzero, it has the specified precision. An Ordering is also returned,
indicating whether the returned value is less than, equal to, or greater than the original
value.
If you want the Float’s precision to be equal to the Integer’s number of
significant bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_integer_prec_round_ref.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
use std::cmp::Ordering;
let (x, o) = Float::from_integer_prec_ref(&Integer::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_ref(&Integer::from(123), 20);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_ref(&Integer::from(123), 4);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_integer_prec_ref(&Integer::from(-123), 20);
assert_eq!(x.to_string(), "-123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_integer_prec_ref(&Integer::from(-123), 4);
assert_eq!(x.to_string(), "-1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);source§impl Float
impl Float
sourcepub fn from_natural_prec_round(
x: Natural,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_natural_prec_round( x: Natural, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a Natural to a Float, taking the Natural by value. If the Float is
nonzero, it has the specified precision. If rounding is needed, the specified rounding mode
is used. An Ordering is also returned, indicating whether the returned value is less
than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_natural_prec
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
let (x, o) = Float::from_natural_prec_round(Natural::ZERO, 10, RoundingMode::Exact);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_round(
Natural::from(123u32),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_round(Natural::from(123u32), 4, RoundingMode::Floor);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_natural_prec_round(
Natural::from(123u32),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);sourcepub fn from_natural_prec(x: Natural, prec: u64) -> (Float, Ordering)
pub fn from_natural_prec(x: Natural, prec: u64) -> (Float, Ordering)
Converts a Natural to a Float, taking the Natural by value. If the Float is
nonzero, it has the specified precision. An Ordering is also returned, indicating
whether the returned value is less than, equal to, or greater than the original value.
If you want the Float’s precision to be equal to the Natural’s number of
significant bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_natural_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
let (x, o) = Float::from_natural_prec(Natural::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec(Natural::from(123u32), 20);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec(Natural::from(123u32), 4);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);sourcepub fn from_natural_prec_round_ref(
x: &Natural,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_natural_prec_round_ref( x: &Natural, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a Natural to a Float, taking the Natural by reference. If the
Float is nonzero, it has the specified precision. If rounding is needed, the specified
rounding mode is used. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_natural_prec_ref
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
let (x, o) = Float::from_natural_prec_round_ref(&Natural::ZERO, 10, RoundingMode::Exact);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_round_ref(
&Natural::from(123u32),
20,
RoundingMode::Exact
);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_round_ref(
&Natural::from(123u32),
4,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_natural_prec_round_ref(
&Natural::from(123u32),
4,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "1.3e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Greater);sourcepub fn from_natural_prec_ref(x: &Natural, prec: u64) -> (Float, Ordering)
pub fn from_natural_prec_ref(x: &Natural, prec: u64) -> (Float, Ordering)
Converts a Natural to a Float, taking the Natural by reference. If the
Float is nonzero, it has the specified precision. An Ordering is also returned,
indicating whether the returned value is less than, equal to, or greater than the original
value.
If you want the Float’s precision to be equal to the Natural’s number of
significant bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_natural_prec_round_ref.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
let (x, o) = Float::from_natural_prec_ref(&Natural::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_ref(&Natural::from(123u32), 20);
assert_eq!(x.to_string(), "123.0");
assert_eq!(x.get_prec(), Some(20));
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_natural_prec_ref(&Natural::from(123u32), 4);
assert_eq!(x.to_string(), "1.2e2");
assert_eq!(x.get_prec(), Some(4));
assert_eq!(o, Ordering::Less);source§impl Float
impl Float
sourcepub fn from_primitive_float_prec_round<T: PrimitiveFloat>(
x: T,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_primitive_float_prec_round<T: PrimitiveFloat>( x: T, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a primitive float to a Float. If the Float is nonzero and finite, it has
the specified precision. If rounding is needed, the specified rounding mode is used. An
Ordering is also returned, indicating whether the returned value is less than, equal
to, or greater than the original value. (Although a NaN is not comparable to anything,
converting a NaN to a NaN will also return Ordering::Equals, indicating an exact
conversion.)
If you’re only using RoundingMode::Nearest, try using
Float::from_primitive_float_prec instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(prec, x.sci_exponent().abs()).
Examples
See here.
sourcepub fn from_primitive_float_prec<T: PrimitiveFloat>(
x: T,
prec: u64
) -> (Float, Ordering)
pub fn from_primitive_float_prec<T: PrimitiveFloat>( x: T, prec: u64 ) -> (Float, Ordering)
Converts a primitive float to a Float. If the Float is nonzero and finite, it has
the specified precision. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value. (Although a NaN is not
comparable to anything, converting a NaN to a NaN will also return Ordering::Equals,
indicating an exact conversion.)
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_primitive_float_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(prec, x.sci_exponent().abs()).
Examples
See here.
source§impl Float
impl Float
sourcepub fn from_unsigned_prec_round<T: PrimitiveUnsigned>(
x: T,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_unsigned_prec_round<T: PrimitiveUnsigned>( x: T, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a primitive unsigned integer to a Float. If the Float is nonzero, it has
the specified precision. If rounding is needed, the specified rounding mode is used. An
Ordering is also returned, indicating whether the returned value is less than, equal
to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_unsigned_prec
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
See here.
sourcepub fn from_unsigned_prec<T: PrimitiveUnsigned>(
x: T,
prec: u64
) -> (Float, Ordering)
pub fn from_unsigned_prec<T: PrimitiveUnsigned>( x: T, prec: u64 ) -> (Float, Ordering)
Converts an unsigned primitive integer to a Float. If the Float is nonzero, it has
the specified precision. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If you want the Float’s precision to be equal to the integer’s number of significant
bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_unsigned_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
See here.
sourcepub fn from_signed_prec_round<T: PrimitiveSigned>(
x: T,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_signed_prec_round<T: PrimitiveSigned>( x: T, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a primitive signed integer to a Float. If the Float is nonzero, it has the
specified precision. If rounding is needed, the specified rounding mode is used. An
Ordering is also returned, indicating whether the returned value is less than, equal
to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_signed_prec
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
See here.
sourcepub fn from_signed_prec<T: PrimitiveSigned>(
x: T,
prec: u64
) -> (Float, Ordering)
pub fn from_signed_prec<T: PrimitiveSigned>( x: T, prec: u64 ) -> (Float, Ordering)
Converts a signed primitive integer to a Float. If the Float is nonzero, it has the
specified precision. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If you want the Float’s precision to be equal to the integer’s number of significant
bits, try just using Float::from instead.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_signed_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
Examples
See here.
source§impl Float
impl Float
sourcepub fn from_rational_prec_round(
x: Rational,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_rational_prec_round( x: Rational, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a Rational to a Float, taking the Rational by value. If the Float
is nonzero, it has the specified precision. If rounding is needed, the specified rounding
mode is used. An Ordering is also returned, indicating whether the returned value is
less than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_rational_prec
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering;
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(1, 3),
10,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "0.333");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(1, 3),
10,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(1, 3),
10,
RoundingMode::Nearest
);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(-1, 3),
10,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(-1, 3),
10,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "-0.333");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round(
Rational::from_signeds(-1, 3),
10,
RoundingMode::Nearest
);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);sourcepub fn from_rational_prec(x: Rational, prec: u64) -> (Float, Ordering)
pub fn from_rational_prec(x: Rational, prec: u64) -> (Float, Ordering)
Converts a Rational to a Float, taking the Rational by value. If the Float
is nonzero, it has the specified precision. An Ordering is also returned, indicating
whether the returned value is less than, equal to, or greater than the original value.
If the Rational is dyadic (its denominator is a power of 2), then you can convert it to
a Float using try_from instead. The precision of the resulting Float will be the
number of significant bits of the Rational’s numerator.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_rational_prec_round.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(x.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering;
let (x, o) = Float::from_rational_prec(Rational::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_rational_prec(Rational::from_signeds(1, 3), 10);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec(Rational::from_signeds(1, 3), 100);
assert_eq!(x.to_string(), "0.3333333333333333333333333333335");
assert_eq!(x.get_prec(), Some(100));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec(Rational::from_signeds(-1, 3), 10);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec(Rational::from_signeds(-1, 3), 100);
assert_eq!(x.to_string(), "-0.3333333333333333333333333333335");
assert_eq!(x.get_prec(), Some(100));
assert_eq!(o, Ordering::Less);sourcepub fn from_rational_prec_round_ref(
x: &Rational,
prec: u64,
rm: RoundingMode
) -> (Float, Ordering)
pub fn from_rational_prec_round_ref( x: &Rational, prec: u64, rm: RoundingMode ) -> (Float, Ordering)
Converts a Rational to a Float, taking the Rational by reference. If the
Float is nonzero, it has the specified precision. If rounding is needed, the specified
rounding mode is used. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If you’re only using RoundingMode::Nearest, try using Float::from_rational_prec_ref
instead.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(n.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering;
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(1, 3),
10,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "0.333");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(1, 3),
10,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(1, 3),
10,
RoundingMode::Nearest
);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(-1, 3),
10,
RoundingMode::Floor
);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(-1, 3),
10,
RoundingMode::Ceiling
);
assert_eq!(x.to_string(), "-0.333");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_round_ref(
&Rational::from_signeds(-1, 3),
10,
RoundingMode::Nearest
);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);sourcepub fn from_rational_prec_ref(x: &Rational, prec: u64) -> (Float, Ordering)
pub fn from_rational_prec_ref(x: &Rational, prec: u64) -> (Float, Ordering)
Converts a Rational to a Float, taking the Rational by reference. If the
Float is nonzero, it has the specified precision. An Ordering is also returned,
indicating whether the returned value is less than, equal to, or greater than the original
value.
If the Rational is dyadic (its denominator is a power of 2), then you can convert it to
a Float using try_from instead. The precision of the resulting Float will be the
number of significant bits of the Rational’s numerator.
Rounding may occur, in which case RoundingMode::Nearest is used by default. To specify
a rounding mode as well as a precision, try Float::from_rational_prec_round_ref.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(x.significant_bits(), prec).
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering;
let (x, o) = Float::from_rational_prec_ref(&Rational::ZERO, 10);
assert_eq!(x.to_string(), "0.0");
assert_eq!(o, Ordering::Equal);
let (x, o) = Float::from_rational_prec_ref(&Rational::from_signeds(1, 3), 10);
assert_eq!(x.to_string(), "0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_ref(&Rational::from_signeds(1, 3), 100);
assert_eq!(x.to_string(), "0.3333333333333333333333333333335");
assert_eq!(x.get_prec(), Some(100));
assert_eq!(o, Ordering::Greater);
let (x, o) = Float::from_rational_prec_ref(&Rational::from_signeds(-1, 3), 10);
assert_eq!(x.to_string(), "-0.3335");
assert_eq!(x.get_prec(), Some(10));
assert_eq!(o, Ordering::Less);
let (x, o) = Float::from_rational_prec_ref(&Rational::from_signeds(-1, 3), 100);
assert_eq!(x.to_string(), "-0.3333333333333333333333333333335");
assert_eq!(x.get_prec(), Some(100));
assert_eq!(o, Ordering::Less);source§impl Float
impl Float
sourcepub fn sci_mantissa_and_exponent_round<T: PrimitiveFloat>(
&self,
rm: RoundingMode
) -> Option<(T, i64, Ordering)>
pub fn sci_mantissa_and_exponent_round<T: PrimitiveFloat>( &self, rm: RoundingMode ) -> Option<(T, i64, Ordering)>
Returns a Float’s scientific mantissa and exponent, rounding according to the specified
rounding mode. An Ordering is also returned, indicating whether the mantissa and
exponent represent a value that is less than, equal to, or greater than the original value.
When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is
a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as a float. The
conversion might not be exact, so we round to the nearest float using the provided rounding
mode. If the rounding mode is Exact but the conversion is not exact, None is returned.
$$
f(x, r) \approx \left (\frac{x}{2^{\lfloor \log_2 x \rfloor}},
\lfloor \log_2 x \rfloor\right ).
$$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_base::num::float::NiceFloat;
use malachite_base::rounding_modes::RoundingMode;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
let test = |x: Float, rm: RoundingMode, out: Option<(f32, i64, Ordering)>| {
assert_eq!(
x.sci_mantissa_and_exponent_round(rm)
.map(|(m, e, o)| (NiceFloat(m), e, o)),
out.map(|(m, e, o)| (NiceFloat(m), e, o))
);
};
test(Float::from(3u32), RoundingMode::Floor, Some((1.5, 1, Ordering::Equal)));
test(Float::from(3u32), RoundingMode::Down, Some((1.5, 1, Ordering::Equal)));
test(Float::from(3u32), RoundingMode::Ceiling, Some((1.5, 1, Ordering::Equal)));
test(Float::from(3u32), RoundingMode::Up, Some((1.5, 1, Ordering::Equal)));
test(Float::from(3u32), RoundingMode::Nearest, Some((1.5, 1, Ordering::Equal)));
test(Float::from(3u32), RoundingMode::Exact, Some((1.5, 1, Ordering::Equal)));
let x = Float::from(std::f64::consts::PI);
test(x.clone(), RoundingMode::Floor, Some((1.5707963, 1, Ordering::Less)));
test(x.clone(), RoundingMode::Down, Some((1.5707963, 1, Ordering::Less)));
test(x.clone(), RoundingMode::Ceiling, Some((1.5707964, 1, Ordering::Greater)));
test(x.clone(), RoundingMode::Up, Some((1.5707964, 1, Ordering::Greater)));
test(x.clone(), RoundingMode::Nearest, Some((1.5707964, 1, Ordering::Greater)));
test(x.clone(), RoundingMode::Exact, None);
test(
Float::from(1000000000u32),
RoundingMode::Nearest,
Some((1.8626451, 29, Ordering::Equal)),
);
test(
Float::from(Natural::from(10u32).pow(52)),
RoundingMode::Nearest,
Some((1.670478, 172, Ordering::Greater)),
);
test(Float::from(Natural::from(10u32).pow(52)), RoundingMode::Exact, None);Trait Implementations§
source§impl<'a> Abs for &'a Float
impl<'a> Abs for &'a Float
source§fn abs(self) -> Float
fn abs(self) -> Float
Takes the absolute value of a Float, taking the Float by reference.
$$ f(x) = |x|. $$
Special cases:
- $f(\text{NaN}) = \text{NaN}$
- $f(\infty) = f(-\infty) = \infty$
- $f(0.0) = f(-0.0) = 0.0$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::arithmetic::traits::Abs;
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat((&Float::NAN).abs()), ComparableFloat(Float::NAN));
assert_eq!((&Float::INFINITY).abs(), Float::INFINITY);
assert_eq!((&Float::NEGATIVE_INFINITY).abs(), Float::INFINITY);
assert_eq!(ComparableFloat((&Float::ZERO).abs()), ComparableFloat(Float::ZERO));
assert_eq!(ComparableFloat((&Float::NEGATIVE_ZERO).abs()), ComparableFloat(Float::ZERO));
assert_eq!((&Float::ONE).abs(), Float::ONE);
assert_eq!((&Float::NEGATIVE_ONE).abs(), Float::ONE);type Output = Float
source§impl Abs for Float
impl Abs for Float
source§fn abs(self) -> Float
fn abs(self) -> Float
Takes the absolute value of a Float, taking the Float by value.
$$ f(x) = |x|. $$
Special cases:
- $f(\text{NaN}) = \text{NaN}$
- $f(\infty) = f(-\infty) = \infty$
- $f(0.0) = f(-0.0) = 0.0$
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::Abs;
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat(Float::NAN.abs()), ComparableFloat(Float::NAN));
assert_eq!(Float::INFINITY.abs(), Float::INFINITY);
assert_eq!(Float::NEGATIVE_INFINITY.abs(), Float::INFINITY);
assert_eq!(ComparableFloat(Float::ZERO.abs()), ComparableFloat(Float::ZERO));
assert_eq!(ComparableFloat(Float::NEGATIVE_ZERO.abs()), ComparableFloat(Float::ZERO));
assert_eq!(Float::ONE.abs(), Float::ONE);
assert_eq!(Float::NEGATIVE_ONE.abs(), Float::ONE);type Output = Float
source§impl AbsAssign for Float
impl AbsAssign for Float
source§fn abs_assign(&mut self)
fn abs_assign(&mut self)
Replaces a Float with its absolute value.
$$ x \gets |x|. $$
Special cases:
- $\text{NaN} \gets \text{NaN}$
- $\infty \gets \infty$
- $-\infty \gets \infty$
- $0.0 \gets 0.0$
- $-0.0 \gets 0.0$
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::AbsAssign;
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
let mut x = Float::NAN;
x.abs_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::NAN));
let mut x = Float::INFINITY;
x.abs_assign();
assert_eq!(x, Float::INFINITY);
let mut x = Float::NEGATIVE_INFINITY;
x.abs_assign();
assert_eq!(x, Float::INFINITY);
let mut x = Float::ZERO;
x.abs_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::ZERO));
let mut x = Float::NEGATIVE_ZERO;
x.abs_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::ZERO));
let mut x = Float::ONE;
x.abs_assign();
assert_eq!(x, Float::ONE);
let mut x = Float::NEGATIVE_ONE;
x.abs_assign();
assert_eq!(x, Float::ONE);source§impl<'a> ConvertibleFrom<&'a Float> for Integer
impl<'a> ConvertibleFrom<&'a Float> for Integer
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an Integer, taking the Float by
reference.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.significant_bits().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(Integer::convertible_from(&Float::ZERO), true);
assert_eq!(Integer::convertible_from(&Float::from(123.0)), true);
assert_eq!(Integer::convertible_from(&Float::from(-123.0)), true);
assert_eq!(Integer::convertible_from(&Float::from(1.5)), false);
assert_eq!(Integer::convertible_from(&Float::INFINITY), false);
assert_eq!(Integer::convertible_from(&Float::NAN), false);source§impl<'a> ConvertibleFrom<&'a Float> for Natural
impl<'a> ConvertibleFrom<&'a Float> for Natural
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a Natural (when the Float is
non-negative and an integer), taking the Float by reference.
Both positive and negative zero are convertible to a Natural. (Although negative zero
is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.significant_bits().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(Natural::convertible_from(&Float::ZERO), true);
assert_eq!(Natural::convertible_from(&Float::from(123.0)), true);
assert_eq!(Natural::convertible_from(&Float::from(-123.0)), false);
assert_eq!(Natural::convertible_from(&Float::from(1.5)), false);
assert_eq!(Natural::convertible_from(&Float::INFINITY), false);
assert_eq!(Natural::convertible_from(&Float::NAN), false);source§impl<'a> ConvertibleFrom<&'a Float> for Rational
impl<'a> ConvertibleFrom<&'a Float> for Rational
source§fn convertible_from(x: &'a Float) -> bool
fn convertible_from(x: &'a Float) -> bool
Determines whether a Float can be converted to a Rational (which is when the
Float is finite), taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_float::Float;
use malachite_q::Rational;
assert_eq!(Rational::convertible_from(&Float::ZERO), true);
assert_eq!(Rational::convertible_from(&Float::from(123.0)), true);
assert_eq!(Rational::convertible_from(&Float::from(-123.0)), true);
assert_eq!(Rational::convertible_from(&Float::from(1.5)), true);
assert_eq!(Rational::convertible_from(&Float::INFINITY), false);
assert_eq!(Rational::convertible_from(&Float::NAN), false);source§impl<'a> ConvertibleFrom<&'a Float> for f32
impl<'a> ConvertibleFrom<&'a Float> for f32
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a primitive float, taking the
Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for f64
impl<'a> ConvertibleFrom<&'a Float> for f64
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a primitive float, taking the
Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for i128
impl<'a> ConvertibleFrom<&'a Float> for i128
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for i16
impl<'a> ConvertibleFrom<&'a Float> for i16
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for i32
impl<'a> ConvertibleFrom<&'a Float> for i32
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for i64
impl<'a> ConvertibleFrom<&'a Float> for i64
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for i8
impl<'a> ConvertibleFrom<&'a Float> for i8
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for isize
impl<'a> ConvertibleFrom<&'a Float> for isize
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to a signed primitive integer,
taking the Float by reference.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for u128
impl<'a> ConvertibleFrom<&'a Float> for u128
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for u16
impl<'a> ConvertibleFrom<&'a Float> for u16
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for u32
impl<'a> ConvertibleFrom<&'a Float> for u32
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for u64
impl<'a> ConvertibleFrom<&'a Float> for u64
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for u8
impl<'a> ConvertibleFrom<&'a Float> for u8
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Float> for usize
impl<'a> ConvertibleFrom<&'a Float> for usize
source§fn convertible_from(f: &'a Float) -> bool
fn convertible_from(f: &'a Float) -> bool
Determines whether a Float can be converted to an unsigned primitive integer,
taking the Float by reference.
Both positive and negative zero are convertible to any unsigned primitive integer. (Although negative zero is nominally negative, the real number it represents is zero, which is not negative.)
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl<'a> ConvertibleFrom<&'a Rational> for Float
impl<'a> ConvertibleFrom<&'a Rational> for Float
source§fn convertible_from(x: &'a Rational) -> bool
fn convertible_from(x: &'a Rational) -> bool
Determines whether a Rational can be converted to an Float, taking the Rational
by reference.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_float::Float;
use malachite_q::Rational;
assert_eq!(Float::convertible_from(&Rational::ZERO), true);
assert_eq!(Float::convertible_from(&Rational::from_signeds(3, 8)), true);
assert_eq!(Float::convertible_from(&Rational::from_signeds(-3, 8)), true);
assert_eq!(Float::convertible_from(&Rational::from_signeds(1, 3)), false);
assert_eq!(Float::convertible_from(&Rational::from_signeds(-1, 3)), false);source§impl<'a> From<&'a Integer> for Float
impl<'a> From<&'a Integer> for Float
source§fn from(n: &'a Integer) -> Float
fn from(n: &'a Integer) -> Float
Converts an Integer to a Float, taking the Integer by reference.
If the Integer is nonzero, the precision of the Float is equal to the Integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_integer_prec_ref. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a precision,
try Float::from_integer_prec_round_ref.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is n.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(Float::from(&Integer::ZERO).to_string(), "0.0");
assert_eq!(Float::from(&Integer::from(123)).to_string(), "123.0");
assert_eq!(Float::from(&Integer::from(123)).get_prec(), Some(7));
assert_eq!(Float::from(&Integer::from(-123)).to_string(), "-123.0");source§impl<'a> From<&'a Natural> for Float
impl<'a> From<&'a Natural> for Float
source§fn from(n: &'a Natural) -> Float
fn from(n: &'a Natural) -> Float
Converts a Natural to a Float, taking the Natural by reference.
If the Natural is nonzero, the precision of the Float is equal to the Natural’s
number of significant bits. If you want to specify a different precision, try
Float::from_natural_prec_ref. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a precision,
try Float::from_natural_prec_round_ref.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is n.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(Float::from(&Natural::ZERO).to_string(), "0.0");
assert_eq!(Float::from(&Natural::from(123u32)).to_string(), "123.0");
assert_eq!(Float::from(&Natural::from(123u32)).get_prec(), Some(7));source§impl From<Integer> for Float
impl From<Integer> for Float
source§fn from(n: Integer) -> Float
fn from(n: Integer) -> Float
Converts an Integer to a Float, taking the Integer by value.
If the Integer is nonzero, the precision of the Float is equal to the Integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_integer_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a precision,
try Float::from_integer_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is n.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(Float::from(Integer::ZERO).to_string(), "0.0");
assert_eq!(Float::from(Integer::from(123)).to_string(), "123.0");
assert_eq!(Float::from(Integer::from(123)).get_prec(), Some(7));
assert_eq!(Float::from(Integer::from(-123)).to_string(), "-123.0");source§impl From<Natural> for Float
impl From<Natural> for Float
source§fn from(n: Natural) -> Float
fn from(n: Natural) -> Float
Converts a Natural to a Float, taking the Natural by value.
If the Natural is nonzero, the precision of the Float is equal to the Natural’s
number of significant bits. If you want to specify a different precision, try
Float::from_natural_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a precision,
try Float::from_natural_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is n.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(Float::from(Natural::ZERO).to_string(), "0.0");
assert_eq!(Float::from(Natural::from(123u32)).to_string(), "123.0");
assert_eq!(Float::from(Natural::from(123u32)).get_prec(), Some(7));source§impl From<f32> for Float
impl From<f32> for Float
source§fn from(x: f32) -> Float
fn from(x: f32) -> Float
Converts a primitive float to a Float.
If the primitive float is finite and nonzero, the precision of the Float is
equal to the maximum precision of any primitive float in the same binade (for
normal f32s this is 24, and for normal f64s it is 53). If you want to specify a
different precision, try Float::from_primitive_float_prec. This may require
rounding, which uses RoundingMode::Nearest by default. To specify a rounding
mode as well as a precision, try Float::from_primitive_float_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is x.sci_exponent().abs().
Examples
See here.
source§impl From<f64> for Float
impl From<f64> for Float
source§fn from(x: f64) -> Float
fn from(x: f64) -> Float
Converts a primitive float to a Float.
If the primitive float is finite and nonzero, the precision of the Float is
equal to the maximum precision of any primitive float in the same binade (for
normal f32s this is 24, and for normal f64s it is 53). If you want to specify a
different precision, try Float::from_primitive_float_prec. This may require
rounding, which uses RoundingMode::Nearest by default. To specify a rounding
mode as well as a precision, try Float::from_primitive_float_prec_round.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is x.sci_exponent().abs().
Examples
See here.
source§impl From<i128> for Float
impl From<i128> for Float
source§fn from(i: i128) -> Float
fn from(i: i128) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<i16> for Float
impl From<i16> for Float
source§fn from(i: i16) -> Float
fn from(i: i16) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<i32> for Float
impl From<i32> for Float
source§fn from(i: i32) -> Float
fn from(i: i32) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<i64> for Float
impl From<i64> for Float
source§fn from(i: i64) -> Float
fn from(i: i64) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<i8> for Float
impl From<i8> for Float
source§fn from(i: i8) -> Float
fn from(i: i8) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<isize> for Float
impl From<isize> for Float
source§fn from(i: isize) -> Float
fn from(i: isize) -> Float
Converts a signed primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_signed_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_signed_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<u128> for Float
impl From<u128> for Float
source§fn from(u: u128) -> Float
fn from(u: u128) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<u16> for Float
impl From<u16> for Float
source§fn from(u: u16) -> Float
fn from(u: u16) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<u32> for Float
impl From<u32> for Float
source§fn from(u: u32) -> Float
fn from(u: u32) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<u64> for Float
impl From<u64> for Float
source§fn from(u: u64) -> Float
fn from(u: u64) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<u8> for Float
impl From<u8> for Float
source§fn from(u: u8) -> Float
fn from(u: u8) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl From<usize> for Float
impl From<usize> for Float
source§fn from(u: usize) -> Float
fn from(u: usize) -> Float
Converts an unsigned primitive integer to a Float.
If the integer is nonzero, the precision of the Float is equal to the integer’s
number of significant bits. If you want to specify a different precision, try
Float::from_unsigned_prec. This may require rounding, which uses
RoundingMode::Nearest by default. To specify a rounding mode as well as a
precision, try Float::from_unsigned_prec_round.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§impl FromStringBase for Float
impl FromStringBase for Float
source§impl IntegerMantissaAndExponent<Natural, i64> for Float
impl IntegerMantissaAndExponent<Natural, i64> for Float
source§fn integer_mantissa_and_exponent(self) -> (Natural, i64)
fn integer_mantissa_and_exponent(self) -> (Natural, i64)
Returns a Float’s integer mantissa and exponent, taking the Float by value.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = (\frac{|x|}{2^{e_i}}, e_i), $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.
The inverse operation is
from_integer_mantissa_and_exponent.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::ONE.integer_mantissa_and_exponent(), (Natural::ONE, 0));
assert_eq!(
Float::from(std::f64::consts::PI).integer_mantissa_and_exponent(),
(Natural::from(884279719003555u64), -48)
);
assert_eq!(
Float::from(Natural::from(3u32).pow(50u64)).integer_mantissa_and_exponent(),
(Natural::from_str("717897987691852588770249").unwrap(), 0)
);
assert_eq!(
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
.integer_mantissa_and_exponent(),
(Natural::from_str("1067349099133908271875104088939").unwrap(), -179)
);source§fn integer_exponent(self) -> i64
fn integer_exponent(self) -> i64
Returns a Float’s integer exponent, taking the Float by value.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = e_i, $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::ONE.integer_exponent(), 0);
assert_eq!(Float::from(std::f64::consts::PI).integer_exponent(), -48);
assert_eq!(Float::from(Natural::from(3u32).pow(50u64)).integer_exponent(), 0);
assert_eq!(
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0.integer_exponent(),
-179
);source§fn from_integer_mantissa_and_exponent(
integer_mantissa: Natural,
integer_exponent: i64
) -> Option<Float>
fn from_integer_mantissa_and_exponent( integer_mantissa: Natural, integer_exponent: i64 ) -> Option<Float>
Constructs a Float from its integer mantissa and exponent.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer.
$$ f(x) = 2^{e_i}m_i. $$
The input does not have to be reduced; that is, the mantissa does not have to be odd.
The result is an Option, but for this trait implementation the result is always Some.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
integer_mantissa.significant_bits().
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::from_integer_mantissa_and_exponent(Natural::ONE, 0).unwrap(), 1);
assert_eq!(
Float::from_integer_mantissa_and_exponent(Natural::from(884279719003555u64), -48)
.unwrap(),
std::f64::consts::PI
);
assert_eq!(
Float::from_integer_mantissa_and_exponent(
Natural::from_str("717897987691852588770249").unwrap(),
0
).unwrap(),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
Float::from_integer_mantissa_and_exponent(
Natural::from_str("1067349099133908271875104088939").unwrap(),
-179
).unwrap(),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);source§fn integer_mantissa(self) -> M
fn integer_mantissa(self) -> M
source§impl<'a> IntegerMantissaAndExponent<Natural, i64, Float> for &'a Float
impl<'a> IntegerMantissaAndExponent<Natural, i64, Float> for &'a Float
source§fn integer_mantissa_and_exponent(self) -> (Natural, i64)
fn integer_mantissa_and_exponent(self) -> (Natural, i64)
Returns a Float’s integer mantissa and exponent, taking the Float by reference.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = (\frac{|x|}{2^{e_i}}, e_i), $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.
The inverse operation is
from_integer_mantissa_and_exponent.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!((&Float::ONE).integer_mantissa_and_exponent(), (Natural::ONE, 0));
assert_eq!(
(&Float::from(std::f64::consts::PI)).integer_mantissa_and_exponent(),
(Natural::from(884279719003555u64), -48)
);
assert_eq!(
(&Float::from(Natural::from(3u32).pow(50u64))).integer_mantissa_and_exponent(),
(Natural::from_str("717897987691852588770249").unwrap(), 0)
);
assert_eq!(
(&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0)
.integer_mantissa_and_exponent(),
(Natural::from_str("1067349099133908271875104088939").unwrap(), -179)
);source§fn integer_exponent(self) -> i64
fn integer_exponent(self) -> i64
Returns a Float’s integer exponent, taking the Float by reference.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = e_i, $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!((&Float::ONE).integer_exponent(), 0);
assert_eq!((&Float::from(std::f64::consts::PI)).integer_exponent(), -48);
assert_eq!((&Float::from(Natural::from(3u32).pow(50u64))).integer_exponent(), 0);
assert_eq!(
(&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0)
.integer_exponent(),
-179
);source§fn from_integer_mantissa_and_exponent(
integer_mantissa: Natural,
integer_exponent: i64
) -> Option<Float>
fn from_integer_mantissa_and_exponent( integer_mantissa: Natural, integer_exponent: i64 ) -> Option<Float>
Constructs a Float from its integer mantissa and exponent.
When $x$ is finite and nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer.
$$ f(x) = 2^{e_i}m_i. $$
The input does not have to be reduced; that is, the mantissa does not have to be odd.
The result is an Option, but for this trait implementation the result is always Some.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
integer_mantissa.significant_bits().
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(
<&Float as IntegerMantissaAndExponent<_, _, _>>::from_integer_mantissa_and_exponent(
Natural::ONE,
0
).unwrap(),
1
);
assert_eq!(
<&Float as IntegerMantissaAndExponent<_, _, _>>::from_integer_mantissa_and_exponent(
Natural::from(884279719003555u64),
-48
).unwrap(),
std::f64::consts::PI
);
assert_eq!(
<&Float as IntegerMantissaAndExponent<_, _, _>>::from_integer_mantissa_and_exponent(
Natural::from_str("717897987691852588770249").unwrap(),
0
).unwrap(),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
<&Float as IntegerMantissaAndExponent<_, _, _>>::from_integer_mantissa_and_exponent(
Natural::from_str("1067349099133908271875104088939").unwrap(),
-179
).unwrap(),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);source§fn integer_mantissa(self) -> M
fn integer_mantissa(self) -> M
source§impl<'a> IsInteger for &'a Float
impl<'a> IsInteger for &'a Float
source§fn is_integer(self) -> bool
fn is_integer(self) -> bool
Determines whether a Float is an integer.
$f(x) = x \in \Z$.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{One, OneHalf, Zero};
use malachite_base::num::conversion::traits::IsInteger;
use malachite_float::Float;
assert_eq!(Float::ZERO.is_integer(), true);
assert_eq!(Float::ONE.is_integer(), true);
assert_eq!(Float::from(100).is_integer(), true);
assert_eq!(Float::from(-100).is_integer(), true);
assert_eq!(Float::ONE_HALF.is_integer(), false);
assert_eq!((-Float::ONE_HALF).is_integer(), false);source§impl IsPowerOf2 for Float
impl IsPowerOf2 for Float
source§fn is_power_of_2(&self) -> bool
fn is_power_of_2(&self) -> bool
Determines whether a Float is an integer power of 2.
$f(x) = (\exists n \in \Z : 2^n = x)$.
Floats that are NaN, infinite, or zero are not powers of 2.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::basic::traits::{NaN, One, OneHalf, Two};
use malachite_base::num::arithmetic::traits::IsPowerOf2;
use malachite_float::Float;
assert_eq!(Float::NAN.is_power_of_2(), false);
assert_eq!(Float::ONE.is_power_of_2(), true);
assert_eq!(Float::TWO.is_power_of_2(), true);
assert_eq!(Float::ONE_HALF.is_power_of_2(), true);
assert_eq!(Float::from(1024).is_power_of_2(), true);
assert_eq!(Float::from(3).is_power_of_2(), false);
assert_eq!(Float::from(1025).is_power_of_2(), false);
assert_eq!(Float::from(0.1f64).is_power_of_2(), false);source§impl<'a> Neg for &'a Float
impl<'a> Neg for &'a Float
source§fn neg(self) -> Float
fn neg(self) -> Float
Negates a Float, taking it by reference.
$$ f(x) = -x. $$
Special cases:
- $f(\text{NaN}) = \text{NaN}$
- $f(\infty) = -\infty$
- $f(-\infty) = \infty$
- $f(0.0) = -0.0$
- $f(-0.0) = 0.0$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat(-&Float::NAN), ComparableFloat(Float::NAN));
assert_eq!(-&Float::INFINITY, Float::NEGATIVE_INFINITY);
assert_eq!(-&Float::NEGATIVE_INFINITY, Float::INFINITY);
assert_eq!(ComparableFloat(-&Float::ZERO), ComparableFloat(Float::NEGATIVE_ZERO));
assert_eq!(ComparableFloat(-&Float::NEGATIVE_ZERO), ComparableFloat(Float::ZERO));
assert_eq!(-&Float::ONE, Float::NEGATIVE_ONE);
assert_eq!(-&Float::NEGATIVE_ONE, Float::ONE);source§impl Neg for Float
impl Neg for Float
source§fn neg(self) -> Float
fn neg(self) -> Float
Negates a Float, taking it by value.
$$ f(x) = -x. $$
Special cases:
- $f(\text{NaN}) = \text{NaN}$
- $f(\infty) = -\infty$
- $f(-\infty) = \infty$
- $f(0.0) = -0.0$
- $f(-0.0) = 0.0$
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat(-Float::NAN), ComparableFloat(Float::NAN));
assert_eq!(-Float::INFINITY, Float::NEGATIVE_INFINITY);
assert_eq!(-Float::NEGATIVE_INFINITY, Float::INFINITY);
assert_eq!(ComparableFloat(-Float::ZERO), ComparableFloat(Float::NEGATIVE_ZERO));
assert_eq!(ComparableFloat(-Float::NEGATIVE_ZERO), ComparableFloat(Float::ZERO));
assert_eq!(-Float::ONE, Float::NEGATIVE_ONE);
assert_eq!(-Float::NEGATIVE_ONE, Float::ONE);source§impl NegAssign for Float
impl NegAssign for Float
source§fn neg_assign(&mut self)
fn neg_assign(&mut self)
Negates a Float in place.
$$ x \gets -x. $$
Special cases:
- $\text{NaN} \gets \text{NaN}$
- $\infty \gets -\infty$
- $-\infty \gets \infty$
- $0.0 \gets -0.0$
- $-0.0 \gets 0.0$
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::NegAssign;
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::{ComparableFloat, Float};
let mut x = Float::NAN;
x.neg_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::NAN));
let mut x = Float::INFINITY;
x.neg_assign();
assert_eq!(x, Float::NEGATIVE_INFINITY);
let mut x = Float::NEGATIVE_INFINITY;
x.neg_assign();
assert_eq!(x, Float::INFINITY);
let mut x = Float::ZERO;
x.neg_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::NEGATIVE_ZERO));
let mut x = Float::NEGATIVE_ZERO;
x.neg_assign();
assert_eq!(ComparableFloat(x), ComparableFloat(Float::ZERO));
let mut x = Float::ONE;
x.neg_assign();
assert_eq!(x, Float::NEGATIVE_ONE);
let mut x = Float::NEGATIVE_ONE;
x.neg_assign();
assert_eq!(x, Float::ONE);source§impl NegativeInfinity for Float
impl NegativeInfinity for Float
The constant -Infinity.
const NEGATIVE_INFINITY: Float = _
source§impl NegativeOne for Float
impl NegativeOne for Float
The constant -1.0, with precision 1.
const NEGATIVE_ONE: Float = _
source§impl NegativeZero for Float
impl NegativeZero for Float
The constant -0.0, with precision 1.
const NEGATIVE_ZERO: Float = _
source§impl PartialEq<Float> for Integer
impl PartialEq<Float> for Integer
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an Integer is equal to a Float.
No Integer is equal to infinity, negative infinity, or NaN. The Integer zero is
equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{One, OneHalf};
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Integer::from(123) == Float::from(123));
assert!(Integer::from(-123) == Float::from(-123));
assert!(Integer::ONE != Float::ONE_HALF);source§impl PartialEq<Float> for Natural
impl PartialEq<Float> for Natural
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a Natural is equal to a Float.
No Natural is equal to infinity, negative infinity, or NaN. The Natural zero is
equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{One, OneHalf};
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Natural::from(123u32) == Float::from(123));
assert!(Natural::ONE != Float::ONE_HALF);source§impl PartialEq<Float> for Rational
impl PartialEq<Float> for Rational
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a Rational is equal to a Float.
No Rational is equal to infinity, negative infinity, or NaN. The Rational zero is
equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{One, OneHalf};
use malachite_float::Float;
use malachite_q::Rational;
assert!(Rational::from(123) == Float::from(123));
assert!(Rational::from(-123) == Float::from(-123));
assert!(Rational::ONE_HALF == Float::ONE_HALF);
assert!(Rational::from_unsigneds(1u8, 3) != Float::from(1.0f64 / 3.0));source§impl PartialEq<Float> for f32
impl PartialEq<Float> for f32
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a primitive float is equal to a Float.
The primitive float infinity is equal to the Float infinity, and the primitive
float negative infinity is equal to the Float negative infinity. The primitive
float NaN is not equal to anything, not even the Float NaN. Every primitive
float zero is equal to every Float zero, regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§impl PartialEq<Float> for f64
impl PartialEq<Float> for f64
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a primitive float is equal to a Float.
The primitive float infinity is equal to the Float infinity, and the primitive
float negative infinity is equal to the Float negative infinity. The primitive
float NaN is not equal to anything, not even the Float NaN. Every primitive
float zero is equal to every Float zero, regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§impl PartialEq<Float> for i128
impl PartialEq<Float> for i128
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for i16
impl PartialEq<Float> for i16
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for i32
impl PartialEq<Float> for i32
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for i64
impl PartialEq<Float> for i64
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for i8
impl PartialEq<Float> for i8
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for isize
impl PartialEq<Float> for isize
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether a signed primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for u128
impl PartialEq<Float> for u128
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for u16
impl PartialEq<Float> for u16
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for u32
impl PartialEq<Float> for u32
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for u64
impl PartialEq<Float> for u64
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for u8
impl PartialEq<Float> for u8
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Float> for usize
impl PartialEq<Float> for usize
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Determines whether an unsigned primitive integer is equal to a Float.
No primitive integer is equal to infinity, negative infinity, or NaN. The integer
zero is equal to both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
source§impl PartialEq<Integer> for Float
impl PartialEq<Integer> for Float
source§fn eq(&self, other: &Integer) -> bool
fn eq(&self, other: &Integer) -> bool
Determines whether a Float is equal to an Integer.
Infinity, negative infinity, and NaN are not equal to any Integer. Both the Float
zero and the Float negative zero are equal to the Integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{One, OneHalf};
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Float::from(123) == Integer::from(123));
assert!(Float::from(-123) == Integer::from(-123));
assert!(Float::ONE_HALF != Integer::ONE);source§impl PartialEq<Natural> for Float
impl PartialEq<Natural> for Float
source§fn eq(&self, other: &Natural) -> bool
fn eq(&self, other: &Natural) -> bool
Determines whether a Float is equal to a Natural.
Infinity, negative infinity, and NaN are not equal to any Natural. Both the Float
zero and the Float negative zero are equal to the Natural zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{One, OneHalf};
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Float::from(123) == Natural::from(123u32));
assert!(Float::ONE_HALF != Natural::ONE);source§impl PartialEq<Rational> for Float
impl PartialEq<Rational> for Float
source§fn eq(&self, other: &Rational) -> bool
fn eq(&self, other: &Rational) -> bool
Determines whether a Float is equal to a Rational.
Infinity, negative infinity, and NaN are not equal to any Rational. Both the Float
zero and the Float negative zero are equal to the Rational zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::OneHalf;
use malachite_float::Float;
use malachite_q::Rational;
assert!(Float::from(123) == Rational::from(123));
assert!(Float::from(-123) == Rational::from(-123));
assert!(Float::ONE_HALF == Rational::ONE_HALF);
assert!(Float::from(1.0f64 / 3.0) != Rational::from_unsigneds(1u8, 3));source§impl PartialEq<f32> for Float
impl PartialEq<f32> for Float
source§fn eq(&self, other: &f32) -> bool
fn eq(&self, other: &f32) -> bool
Determines whether a Float is equal to a primitive float.
The Float infinity is equal to the primitive float infinity, and the Float
negative infinity is equal to the primitive float negative infinity. The Float
NaN is not equal to anything, not even the primitive float NaN. Every Float
zero is equal to every primitive float zero, regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§impl PartialEq<f64> for Float
impl PartialEq<f64> for Float
source§fn eq(&self, other: &f64) -> bool
fn eq(&self, other: &f64) -> bool
Determines whether a Float is equal to a primitive float.
The Float infinity is equal to the primitive float infinity, and the Float
negative infinity is equal to the primitive float negative infinity. The Float
NaN is not equal to anything, not even the primitive float NaN. Every Float
zero is equal to every primitive float zero, regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§impl PartialEq<i128> for Float
impl PartialEq<i128> for Float
source§fn eq(&self, other: &i128) -> bool
fn eq(&self, other: &i128) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<i16> for Float
impl PartialEq<i16> for Float
source§fn eq(&self, other: &i16) -> bool
fn eq(&self, other: &i16) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<i32> for Float
impl PartialEq<i32> for Float
source§fn eq(&self, other: &i32) -> bool
fn eq(&self, other: &i32) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<i64> for Float
impl PartialEq<i64> for Float
source§fn eq(&self, other: &i64) -> bool
fn eq(&self, other: &i64) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<i8> for Float
impl PartialEq<i8> for Float
source§fn eq(&self, other: &i8) -> bool
fn eq(&self, other: &i8) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<isize> for Float
impl PartialEq<isize> for Float
source§fn eq(&self, other: &isize) -> bool
fn eq(&self, other: &isize) -> bool
Determines whether a Float is equal to a signed primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<u128> for Float
impl PartialEq<u128> for Float
source§fn eq(&self, other: &u128) -> bool
fn eq(&self, other: &u128) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<u16> for Float
impl PartialEq<u16> for Float
source§fn eq(&self, other: &u16) -> bool
fn eq(&self, other: &u16) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<u32> for Float
impl PartialEq<u32> for Float
source§fn eq(&self, other: &u32) -> bool
fn eq(&self, other: &u32) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<u64> for Float
impl PartialEq<u64> for Float
source§fn eq(&self, other: &u64) -> bool
fn eq(&self, other: &u64) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<u8> for Float
impl PartialEq<u8> for Float
source§fn eq(&self, other: &u8) -> bool
fn eq(&self, other: &u8) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq<usize> for Float
impl PartialEq<usize> for Float
source§fn eq(&self, other: &usize) -> bool
fn eq(&self, other: &usize) -> bool
Determines whether a Float is equal to an unsigned primitive integer.
Infinity, negative infinity, and NaN are not equal to any primitive integer. Both
the Float zero and the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§impl PartialEq for Float
impl PartialEq for Float
source§fn eq(&self, other: &Float) -> bool
fn eq(&self, other: &Float) -> bool
Compares two Floats for equality.
This implementation follows the IEEE 754 standard. NaN is not equal to anything, not even
itself. Positive zero is equal to negative zero. Floats with different precisions are
equal if they represent the same numeric value.
For different equality behavior, consider using ComparableFloat or
ComparableFloatRef.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
use malachite_float::Float;
assert_ne!(Float::NAN, Float::NAN);
assert_eq!(Float::ZERO, Float::ZERO);
assert_eq!(Float::NEGATIVE_ZERO, Float::NEGATIVE_ZERO);
assert_eq!(Float::ZERO, Float::NEGATIVE_ZERO);
assert_eq!(Float::ONE, Float::ONE);
assert_ne!(Float::ONE, Float::TWO);
assert_eq!(Float::ONE, Float::one_prec(100));source§impl PartialOrd<Float> for Integer
impl PartialOrd<Float> for Integer
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an Integer to a Float.
No Integer is comparable to NaN. Every Integer is smaller than infinity and greater
than negative infinity. The Integer zero is equal to both the Float zero and the
Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Integer::from(100) > Float::from(80));
assert!(Integer::from(-100) < Float::from(-80));
assert!(Integer::from(100) < Float::INFINITY);
assert!(Integer::from(-100) > Float::NEGATIVE_INFINITY);1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for Natural
impl PartialOrd<Float> for Natural
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a Natural to a Float.
No Natural is comparable to NaN. Every Natural is smaller than infinity and greater
than negative infinity. The Natural zero is equal to both the Float zero and the
Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Natural::from(100u32) > Float::from(80));
assert!(Natural::from(100u32) < Float::INFINITY);
assert!(Natural::from(100u32) > Float::NEGATIVE_INFINITY);1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for Rational
impl PartialOrd<Float> for Rational
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an Rational to a Float.
No Rational is comparable to NaN. Every Rational is smaller than infinity and
greater than negative infinity. The Rational zero is equal to both the Float zero
and the Float negative zero.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_q::Rational;
assert!(Rational::from(100) > Float::from(80));
assert!(Rational::from(-100) < Float::from(-80));
assert!(Rational::from(100) < Float::INFINITY);
assert!(Rational::from(-100) > Float::NEGATIVE_INFINITY);
assert!(Rational::from_unsigneds(1u8, 3) > Float::from(1.0f64 / 3.0));1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for f32
impl PartialOrd<Float> for f32
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a primitive float to a Float.
The primitive float NaN is not comparable to any primitive float, not even the
Float NaN. Every primitive float zero is equal to every Float zero,
regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for f64
impl PartialOrd<Float> for f64
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a primitive float to a Float.
The primitive float NaN is not comparable to any primitive float, not even the
Float NaN. Every primitive float zero is equal to every Float zero,
regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for i128
impl PartialOrd<Float> for i128
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for i16
impl PartialOrd<Float> for i16
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for i32
impl PartialOrd<Float> for i32
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for i64
impl PartialOrd<Float> for i64
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for i8
impl PartialOrd<Float> for i8
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for isize
impl PartialOrd<Float> for isize
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares a signed primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for u128
impl PartialOrd<Float> for u128
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for u16
impl PartialOrd<Float> for u16
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for u32
impl PartialOrd<Float> for u32
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for u64
impl PartialOrd<Float> for u64
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for u8
impl PartialOrd<Float> for u8
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Float> for usize
impl PartialOrd<Float> for usize
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares an unsigned primitive integer to a Float.
No integer is comparable to NaN. Every integer is smaller than infinity and greater
than negative infinity. The integer zero is equal to both the Float zero and
the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Integer> for Float
impl PartialOrd<Integer> for Float
source§fn partial_cmp(&self, other: &Integer) -> Option<Ordering>
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>
Compares a Float to an Integer.
NaN is not comparable to any Integer. Infinity is greater than any Integer, and
negative infinity is less. Both the Float zero and the Float negative zero are
equal to the Integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Float::from(80) < Integer::from(100));
assert!(Float::from(-80) > Integer::from(-100));
assert!(Float::INFINITY > Integer::from(100));
assert!(Float::NEGATIVE_INFINITY < Integer::from(-100));1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Natural> for Float
impl PartialOrd<Natural> for Float
source§fn partial_cmp(&self, other: &Natural) -> Option<Ordering>
fn partial_cmp(&self, other: &Natural) -> Option<Ordering>
Compares a Float to a Natural.
NaN is not comparable to any Natural. Infinity is greater than any Natural, and
negative infinity is less. Both the Float zero and the Float negative zero are
equal to the Natural zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Float::from(80) < Natural::from(100u32));
assert!(Float::INFINITY > Natural::from(100u32));
assert!(Float::NEGATIVE_INFINITY < Natural::from(100u32));1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<Rational> for Float
impl PartialOrd<Rational> for Float
source§fn partial_cmp(&self, other: &Rational) -> Option<Ordering>
fn partial_cmp(&self, other: &Rational) -> Option<Ordering>
Compares a Float to a Rational.
NaN is not comparable to any Rational. Infinity is greater than any Rational, and
negative infinity is less. Both the Float zero and the Float negative zero are
equal to the Rational zero.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_float::Float;
use malachite_q::Rational;
assert!(Float::from(80) < Rational::from(100));
assert!(Float::from(-80) > Rational::from(-100));
assert!(Float::INFINITY > Rational::from(100));
assert!(Float::NEGATIVE_INFINITY < Rational::from(-100));
assert!(Float::from(1.0f64 / 3.0) < Rational::from_unsigneds(1u8, 3));1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<f32> for Float
impl PartialOrd<f32> for Float
source§fn partial_cmp(&self, other: &f32) -> Option<Ordering>
fn partial_cmp(&self, other: &f32) -> Option<Ordering>
Compares a Float to a primitive float.
The Float NaN is not comparable to any primitive float, not even the primitive
float NaN. Every Float zero is equal to every primitive float zero, regardless
of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<f64> for Float
impl PartialOrd<f64> for Float
source§fn partial_cmp(&self, other: &f64) -> Option<Ordering>
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
Compares a Float to a primitive float.
The Float NaN is not comparable to any primitive float, not even the primitive
float NaN. Every Float zero is equal to every primitive float zero, regardless
of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<i128> for Float
impl PartialOrd<i128> for Float
source§fn partial_cmp(&self, other: &i128) -> Option<Ordering>
fn partial_cmp(&self, other: &i128) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<i16> for Float
impl PartialOrd<i16> for Float
source§fn partial_cmp(&self, other: &i16) -> Option<Ordering>
fn partial_cmp(&self, other: &i16) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<i32> for Float
impl PartialOrd<i32> for Float
source§fn partial_cmp(&self, other: &i32) -> Option<Ordering>
fn partial_cmp(&self, other: &i32) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<i64> for Float
impl PartialOrd<i64> for Float
source§fn partial_cmp(&self, other: &i64) -> Option<Ordering>
fn partial_cmp(&self, other: &i64) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<i8> for Float
impl PartialOrd<i8> for Float
source§fn partial_cmp(&self, other: &i8) -> Option<Ordering>
fn partial_cmp(&self, other: &i8) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<isize> for Float
impl PartialOrd<isize> for Float
source§fn partial_cmp(&self, other: &isize) -> Option<Ordering>
fn partial_cmp(&self, other: &isize) -> Option<Ordering>
Compares a Float to a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<u128> for Float
impl PartialOrd<u128> for Float
source§fn partial_cmp(&self, other: &u128) -> Option<Ordering>
fn partial_cmp(&self, other: &u128) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<u16> for Float
impl PartialOrd<u16> for Float
source§fn partial_cmp(&self, other: &u16) -> Option<Ordering>
fn partial_cmp(&self, other: &u16) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<u32> for Float
impl PartialOrd<u32> for Float
source§fn partial_cmp(&self, other: &u32) -> Option<Ordering>
fn partial_cmp(&self, other: &u32) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<u64> for Float
impl PartialOrd<u64> for Float
source§fn partial_cmp(&self, other: &u64) -> Option<Ordering>
fn partial_cmp(&self, other: &u64) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<u8> for Float
impl PartialOrd<u8> for Float
source§fn partial_cmp(&self, other: &u8) -> Option<Ordering>
fn partial_cmp(&self, other: &u8) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd<usize> for Float
impl PartialOrd<usize> for Float
source§fn partial_cmp(&self, other: &usize) -> Option<Ordering>
fn partial_cmp(&self, other: &usize) -> Option<Ordering>
Compares a Float to an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity is greater than any
primitive integer, and negative infinity is less. Both the Float zero and the
Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrd for Float
impl PartialOrd for Float
source§fn partial_cmp(&self, other: &Float) -> Option<Ordering>
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
Compares two Floats.
This implementation follows the IEEE 754 standard. NaN is not comparable to anything, not
even itself. Positive zero is equal to negative zero. Floats with different precisions
are equal if they represent the same numeric value.
For different comparison behavior that provides a total order, consider using
ComparableFloat or ComparableFloatRef.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero
};
use malachite_float::Float;
use std::cmp::Ordering;
use std::str::FromStr;
assert_eq!(Float::NAN.partial_cmp(&Float::NAN), None);
assert_eq!(Float::ZERO.partial_cmp(&Float::NEGATIVE_ZERO), Some(Ordering::Equal));
assert_eq!(Float::ONE.partial_cmp(&Float::one_prec(100)), Some(Ordering::Equal));
assert!(Float::INFINITY > Float::ONE);
assert!(Float::NEGATIVE_INFINITY < Float::ONE);
assert!(Float::ONE_HALF < Float::ONE);
assert!(Float::ONE_HALF > Float::NEGATIVE_ONE);1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read moresource§impl PartialOrdAbs<Float> for Integer
impl PartialOrdAbs<Float> for Integer
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an Integer and a Float.
No Integer is comparable to NaN. Every Integer is smaller in absolute value than
infinity and negative infinity. The Integer zero is equal to both the Float zero
and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Integer::from(100).gt_abs(&Float::from(80)));
assert!(Integer::from(100).lt_abs(&Float::INFINITY));
assert!(Integer::from(-100).lt_abs(&Float::INFINITY));
assert!(Integer::from(-100).lt_abs(&Float::NEGATIVE_INFINITY));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for Natural
impl PartialOrdAbs<Float> for Natural
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares a Natural to the absolute value of a Float.
No Natural is comparable to NaN. Every Natural is smaller in absolute value than
infinity and negative infinity. The Natural zero is equal to both the Float zero
and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Natural::from(100u32).gt_abs(&Float::from(80)));
assert!(Natural::from(100u32).lt_abs(&Float::INFINITY));
assert!(Natural::from(100u32).lt_abs(&Float::NEGATIVE_INFINITY));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for Rational
impl PartialOrdAbs<Float> for Rational
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a Rational and a Float.
No Rational is comparable to NaN. Every Rational is smaller in absolute value than
infinity and negative infinity. The Rational zero is equal to both the Float zero
and the Float negative zero.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_q::Rational;
assert!(Rational::from(100).gt_abs(&Float::from(80)));
assert!(Rational::from(-100).gt_abs(&Float::from(-80)));
assert!(Rational::from(100).lt_abs(&Float::INFINITY));
assert!(Rational::from(-100).lt_abs(&Float::NEGATIVE_INFINITY));
assert!(Rational::from_unsigneds(1u8, 3).gt_abs(&Float::from(1.0f64 / 3.0)));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for f32
impl PartialOrdAbs<Float> for f32
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a primitive float and a Float.
The primitive float NaN is not comparable to any primitive float, not even the
Float NaN. Every primitive float zero is equal to every Float zero,
regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for f64
impl PartialOrdAbs<Float> for f64
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a primitive float and a Float.
The primitive float NaN is not comparable to any primitive float, not even the
Float NaN. Every primitive float zero is equal to every Float zero,
regardless of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for i128
impl PartialOrdAbs<Float> for i128
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for i16
impl PartialOrdAbs<Float> for i16
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for i32
impl PartialOrdAbs<Float> for i32
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for i64
impl PartialOrdAbs<Float> for i64
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for i8
impl PartialOrdAbs<Float> for i8
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for isize
impl PartialOrdAbs<Float> for isize
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of a signed primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for u128
impl PartialOrdAbs<Float> for u128
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for u16
impl PartialOrdAbs<Float> for u16
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for u32
impl PartialOrdAbs<Float> for u32
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for u64
impl PartialOrdAbs<Float> for u64
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for u8
impl PartialOrdAbs<Float> for u8
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Float> for usize
impl PartialOrdAbs<Float> for usize
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of an unsigned primitive integer and a Float.
No primitive integer is comparable to NaN. Every primitive integer is smaller in
absolute value than infinity and negative infinity. The integer zero is equal to
both the Float zero and the Float negative zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Integer> for Float
impl PartialOrdAbs<Integer> for Float
source§fn partial_cmp_abs(&self, other: &Integer) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Integer) -> Option<Ordering>
Compares the absolute values of a Float and an Integer.
NaN is not comparable to any Integer. Infinity and negative infinity are greater in
absolute value than any Integer. Both the Float zero and the Float negative
zero are equal to the Integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert!(Float::from(80).lt_abs(&Integer::from(100)));
assert!(Float::from(-80).lt_abs(&Integer::from(-100)));
assert!(Float::INFINITY.gt_abs(&Integer::from(100)));
assert!(Float::NEGATIVE_INFINITY.gt_abs(&Integer::from(-100)));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Natural> for Float
impl PartialOrdAbs<Natural> for Float
source§fn partial_cmp_abs(&self, other: &Natural) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Natural) -> Option<Ordering>
Compares the absolute value of a Float to a
Natural.
NaN is not comparable to any Natural. Infinity and negative infinity are greater in
absolute value than any Natural. Both the Float zero and the Float negative
zero are equal to the Natural zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
min(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert!(Float::from(80).lt_abs(&Natural::from(100u32)));
assert!(Float::INFINITY.gt_abs(&Natural::from(100u32)));
assert!(Float::NEGATIVE_INFINITY.gt_abs(&Natural::from(100u32)));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<Rational> for Float
impl PartialOrdAbs<Rational> for Float
source§fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering>
Compares the absolute values of a Float and a Rational.
NaN is not comparable to any Rational. Infinity and negative infinity are greater in
absolute value than any Rational. Both the Float zero and the Float negative
zero are equal to the Rational zero.
Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use malachite_q::Rational;
assert!(Float::from(80).lt_abs(&Rational::from(100)));
assert!(Float::from(-80).lt_abs(&Rational::from(-100)));
assert!(Float::INFINITY.gt_abs(&Rational::from(100)));
assert!(Float::NEGATIVE_INFINITY.gt_abs(&Rational::from(-100)));
assert!(Float::from(1.0f64 / 3.0).lt_abs(&Rational::from_unsigneds(1u8, 3)));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<f32> for Float
impl PartialOrdAbs<f32> for Float
source§fn partial_cmp_abs(&self, other: &f32) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &f32) -> Option<Ordering>
Compares the absolute values of a Float and a primitive float.
The Float NaN is not comparable to any primitive float, not even the primitive
float NaN. Every Float zero is equal to every primitive float zero, regardless
of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<f64> for Float
impl PartialOrdAbs<f64> for Float
source§fn partial_cmp_abs(&self, other: &f64) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &f64) -> Option<Ordering>
Compares the absolute values of a Float and a primitive float.
The Float NaN is not comparable to any primitive float, not even the primitive
float NaN. Every Float zero is equal to every primitive float zero, regardless
of sign.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.sci_exponent().abs()).
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<i128> for Float
impl PartialOrdAbs<i128> for Float
source§fn partial_cmp_abs(&self, other: &i128) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &i128) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<i16> for Float
impl PartialOrdAbs<i16> for Float
source§fn partial_cmp_abs(&self, other: &i16) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &i16) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<i32> for Float
impl PartialOrdAbs<i32> for Float
source§fn partial_cmp_abs(&self, other: &i32) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &i32) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<i64> for Float
impl PartialOrdAbs<i64> for Float
source§fn partial_cmp_abs(&self, other: &i64) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &i64) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<i8> for Float
impl PartialOrdAbs<i8> for Float
source§fn partial_cmp_abs(&self, other: &i8) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &i8) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<isize> for Float
impl PartialOrdAbs<isize> for Float
source§fn partial_cmp_abs(&self, other: &isize) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &isize) -> Option<Ordering>
Compares the absolute values of a Float and a signed primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<u128> for Float
impl PartialOrdAbs<u128> for Float
source§fn partial_cmp_abs(&self, other: &u128) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &u128) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<u16> for Float
impl PartialOrdAbs<u16> for Float
source§fn partial_cmp_abs(&self, other: &u16) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &u16) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<u32> for Float
impl PartialOrdAbs<u32> for Float
source§fn partial_cmp_abs(&self, other: &u32) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &u32) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<u64> for Float
impl PartialOrdAbs<u64> for Float
source§fn partial_cmp_abs(&self, other: &u64) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &u64) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<u8> for Float
impl PartialOrdAbs<u8> for Float
source§fn partial_cmp_abs(&self, other: &u8) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &u8) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs<usize> for Float
impl PartialOrdAbs<usize> for Float
source§fn partial_cmp_abs(&self, other: &usize) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &usize) -> Option<Ordering>
Compares the absolute values of a Float and an unsigned primitive integer.
NaN is not comparable to any primitive integer. Infinity and negative infinity are
greater in absolute value than any primitive integer. Both the Float zero and
the Float negative zero are equal to the integer zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Examples
See here.
source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PartialOrdAbs for Float
impl PartialOrdAbs for Float
source§fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering>
Compares the absolute values of two Floats.
This implementation follows the IEEE 754 standard. NaN is not comparable to anything, not
even itself. Floats with different precisions are equal if they represent the same
numeric value.
For different comparison behavior that provides a total order, consider using
ComparableFloat or ComparableFloatRef.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), other.significant_bits()).
Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero
};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::Float;
use std::cmp::Ordering;
use std::str::FromStr;
assert_eq!(Float::NAN.partial_cmp_abs(&Float::NAN), None);
assert_eq!(Float::ZERO.partial_cmp_abs(&Float::NEGATIVE_ZERO), Some(Ordering::Equal));
assert_eq!(Float::ONE.partial_cmp_abs(&Float::one_prec(100)), Some(Ordering::Equal));
assert!(Float::INFINITY.gt_abs(&Float::ONE));
assert!(Float::NEGATIVE_INFINITY.gt_abs(&Float::ONE));
assert!(Float::ONE_HALF.lt_abs(&Float::ONE));
assert!(Float::ONE_HALF.lt_abs(&Float::NEGATIVE_ONE));source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
source§impl PowerOf2<i64> for Float
impl PowerOf2<i64> for Float
source§fn power_of_2(pow: i64) -> Float
fn power_of_2(pow: i64) -> Float
Raises 2 to an integer power, returning a Float with precision 1.
To get a Float with a higher precision, try Float::power_of_2_prec.
$f(k) = 2^k$.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_float::Float;
assert_eq!(Float::power_of_2(0i64).to_string(), "1.0");
assert_eq!(Float::power_of_2(3i64).to_string(), "8.0");
assert_eq!(Float::power_of_2(100i64).to_string(), "1.0e30");
assert_eq!(Float::power_of_2(-3i64).to_string(), "0.1");
assert_eq!(Float::power_of_2(-100i64).to_string(), "8.0e-31");source§impl PowerOf2<u64> for Float
impl PowerOf2<u64> for Float
source§fn power_of_2(pow: u64) -> Float
fn power_of_2(pow: u64) -> Float
Raises 2 to an integer power, returning a Float with precision 1.
To get a Float with a higher precision, try Float::power_of_2_prec.
$f(k) = 2^k$.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_float::Float;
assert_eq!(Float::power_of_2(0u64).to_string(), "1.0");
assert_eq!(Float::power_of_2(3u64).to_string(), "8.0");
assert_eq!(Float::power_of_2(100u64).to_string(), "1.0e30");source§impl RawMantissaAndExponent<Natural, i64> for Float
impl RawMantissaAndExponent<Natural, i64> for Float
source§fn raw_mantissa_and_exponent(self) -> (Natural, i64)
fn raw_mantissa_and_exponent(self) -> (Natural, i64)
Returns the raw mantissa and exponent of a Float, taking the Float by value.
The raw exponent and raw mantissa are the actual bit patterns used to represent the
components of self. When self is finite and nonzero, the raw mantissa is an integer
whose number of significant bits is a multiple of the limb width, and which is equal to the
absolute value of self multiplied by some integer power of 2. The raw exponent is one
more than the floor of the base-2 logarithm of the absolute value of self.
The inverse operation is Self::from_raw_mantissa_and_exponent.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not finite or not zero.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;
use malachite_q::Rational;
if Limb::WIDTH == u64::WIDTH {
let (m, e) = Float::ONE.raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "9223372036854775808");
assert_eq!(e, 1);
let (m, e) = Float::from(std::f64::consts::PI).raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "14488038916154245120");
assert_eq!(e, 2);
let (m, e) = Float::from(Natural::from(3u32).pow(50u64)).raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "202070319366191015160784900114134073344");
assert_eq!(e, 80);
let (m, e) = Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
.raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "286514342137199872022965541161805021184");
assert_eq!(e, -79);
}source§fn raw_exponent(self) -> i64
fn raw_exponent(self) -> i64
Returns the raw exponent of a Float, taking the Float by value.
The raw exponent is one more than the floor of the base-2 logarithm of the absolute value
of self.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not finite or not zero.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
assert_eq!(Float::ONE.raw_exponent(), 1);
assert_eq!(Float::from(std::f64::consts::PI).raw_exponent(), 2);
assert_eq!(Float::from(Natural::from(3u32).pow(50u64)).raw_exponent(), 80);
assert_eq!(
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0.raw_exponent(),
-79
);source§fn from_raw_mantissa_and_exponent(
raw_mantissa: Natural,
raw_exponent: i64
) -> Float
fn from_raw_mantissa_and_exponent( raw_mantissa: Natural, raw_exponent: i64 ) -> Float
Constructs a Float from its raw mantissa and exponent. The resulting Float is
positive and has the smallest precision possible.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if raw_mantissa is zero, or if its number of significant bits is not divisible by
the limb width.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;
use malachite_q::Rational;
use std::str::FromStr;
if Limb::WIDTH == u64::WIDTH {
assert_eq!(
Float::from_raw_mantissa_and_exponent(Natural::from(9223372036854775808u64), 1),
1
);
assert_eq!(
Float::from_raw_mantissa_and_exponent(Natural::from(14488038916154245120u64), 2),
std::f64::consts::PI
);
assert_eq!(
Float::from_raw_mantissa_and_exponent(
Natural::from_str("202070319366191015160784900114134073344").unwrap(),
80
),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
Float::from_raw_mantissa_and_exponent(
Natural::from_str("286514342137199872022965541161805021184").unwrap(),
-79
),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);
}source§fn raw_mantissa(self) -> M
fn raw_mantissa(self) -> M
source§impl<'a> RawMantissaAndExponent<Natural, i64, Float> for &'a Float
impl<'a> RawMantissaAndExponent<Natural, i64, Float> for &'a Float
source§fn raw_mantissa_and_exponent(self) -> (Natural, i64)
fn raw_mantissa_and_exponent(self) -> (Natural, i64)
Returns the raw mantissa and exponent of a Float, taking the Float by reference.
The raw exponent and raw mantissa are the actual bit patterns used to represent the
components of self. When self is finite and nonzero, the raw mantissa is an integer
whose number of significant bits is a multiple of the limb width, and which is equal to the
absolute value of self multiplied by some integer power of 2. The raw exponent is one
more than the floor of the base-2 logarithm of the absolute value of self.
The inverse operation is Float::from_raw_mantissa_and_exponent.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.significant_bits().
Panics
Panics if the Float is not finite or not zero.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;
use malachite_q::Rational;
if Limb::WIDTH == u64::WIDTH {
let (m, e) = (&Float::ONE).raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "9223372036854775808");
assert_eq!(e, 1);
let (m, e) = (&Float::from(std::f64::consts::PI)).raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "14488038916154245120");
assert_eq!(e, 2);
let (m, e) = (&Float::from(Natural::from(3u32).pow(50u64)))
.raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "202070319366191015160784900114134073344");
assert_eq!(e, 80);
let (m, e) = (&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0)
.raw_mantissa_and_exponent();
assert_eq!(m.to_string(), "286514342137199872022965541161805021184");
assert_eq!(e, -79);
}source§fn raw_exponent(self) -> i64
fn raw_exponent(self) -> i64
Returns the raw exponent of a Float, taking the Float by reference.
The raw exponent is one more than the floor of the base-2 logarithm of the absolute value
of self.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not finite or not zero.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
assert_eq!((&Float::ONE).raw_exponent(), 1);
assert_eq!((&Float::from(std::f64::consts::PI)).raw_exponent(), 2);
assert_eq!((&Float::from(Natural::from(3u32).pow(50u64))).raw_exponent(), 80);
assert_eq!(
(&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0).raw_exponent(),
-79
);source§fn from_raw_mantissa_and_exponent(
raw_mantissa: Natural,
raw_exponent: i64
) -> Float
fn from_raw_mantissa_and_exponent( raw_mantissa: Natural, raw_exponent: i64 ) -> Float
Constructs a Float from its raw mantissa and exponent. The resulting Float is
positive and has the smallest precision possible.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if raw_mantissa is zero, or if its number of significant bits is not divisible by
the limb width.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::RawMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;
use malachite_q::Rational;
use std::str::FromStr;
if Limb::WIDTH == u64::WIDTH {
assert_eq!(
<&Float as RawMantissaAndExponent<_, _, _>>::from_raw_mantissa_and_exponent(
Natural::from(9223372036854775808u64),
1
),
1
);
assert_eq!(
<&Float as RawMantissaAndExponent<_, _, _>>::from_raw_mantissa_and_exponent(
Natural::from(14488038916154245120u64),
2
),
std::f64::consts::PI
);
assert_eq!(
<&Float as RawMantissaAndExponent<_, _, _>>::from_raw_mantissa_and_exponent(
Natural::from_str("202070319366191015160784900114134073344").unwrap(),
80
),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
<&Float as RawMantissaAndExponent<_, _, _>>::from_raw_mantissa_and_exponent(
Natural::from_str("286514342137199872022965541161805021184").unwrap(),
-79
),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);
}source§fn raw_mantissa(self) -> M
fn raw_mantissa(self) -> M
source§impl<'a> RoundingFrom<&'a Float> for Integer
impl<'a> RoundingFrom<&'a Float> for Integer
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (Integer, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (Integer, Ordering)
Converts a Float to an Integer, using a specified RoundingMode and taking the
Float by reference. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If the Float is NaN or infinite, the function will panic regardless of the rounding
mode.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float is NaN
or infinite.
Examples
use malachite_base::num::basic::traits::NegativeInfinity;
use malachite_base::num::conversion::traits::RoundingFrom;
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::strings::ToDebugString;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::rounding_from(&Float::from(1.5), RoundingMode::Floor).to_debug_string(),
"(1, Less)"
);
assert_eq!(
Integer::rounding_from(&Float::from(1.5), RoundingMode::Ceiling).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Integer::rounding_from(&Float::from(1.5), RoundingMode::Nearest).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Integer::rounding_from(&Float::from(-1.5), RoundingMode::Floor).to_debug_string(),
"(-2, Less)"
);
assert_eq!(
Integer::rounding_from(&Float::from(-1.5), RoundingMode::Ceiling).to_debug_string(),
"(-1, Greater)"
);
assert_eq!(
Integer::rounding_from(&Float::from(-1.5), RoundingMode::Nearest).to_debug_string(),
"(-2, Less)"
);source§impl<'a> RoundingFrom<&'a Float> for Natural
impl<'a> RoundingFrom<&'a Float> for Natural
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (Natural, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (Natural, Ordering)
Converts a Float to a Natural, using a specified RoundingMode and taking the
Float by reference. An Ordering is also returned, indicating whether the returned
value is less than, equal to, or greater than the original value.
If the Float is negative (including negative infinity), then it will be rounded to zero
when the RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN or positive infinity, the function will panic regardless of the
rounding mode.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float is less
than zero and rm is not Down, Ceiling, or Nearest, or if the Float is NaN or
positive infinity.
Examples
use malachite_base::num::basic::traits::NegativeInfinity;
use malachite_base::num::conversion::traits::RoundingFrom;
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::strings::ToDebugString;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(
Natural::rounding_from(&Float::from(1.5), RoundingMode::Floor).to_debug_string(),
"(1, Less)"
);
assert_eq!(
Natural::rounding_from(&Float::from(1.5), RoundingMode::Ceiling).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Natural::rounding_from(&Float::from(1.5), RoundingMode::Nearest).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Natural::rounding_from(&Float::NEGATIVE_INFINITY, RoundingMode::Down)
.to_debug_string(),
"(0, Greater)"
);
assert_eq!(
Natural::rounding_from(&Float::NEGATIVE_INFINITY, RoundingMode::Ceiling)
.to_debug_string(),
"(0, Greater)"
);
assert_eq!(
Natural::rounding_from(&Float::NEGATIVE_INFINITY, RoundingMode::Nearest)
.to_debug_string(),
"(0, Greater)"
);source§impl<'a> RoundingFrom<&'a Float> for f32
impl<'a> RoundingFrom<&'a Float> for f32
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (f32, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (f32, Ordering)
Converts a Float to a primitive float, using a specified RoundingMode and
taking the Float by reference. An Ordering is also returned, indicating
whether the returned value is less than, equal to, or greater than the original
value. (Although a NaN is not comparable to anything, converting a NaN to a NaN
will also return Ordering::Equals, indicating an exact conversion.)
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not exactly equal to any float of the target type, and
rm is Exact.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for f64
impl<'a> RoundingFrom<&'a Float> for f64
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (f64, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (f64, Ordering)
Converts a Float to a primitive float, using a specified RoundingMode and
taking the Float by reference. An Ordering is also returned, indicating
whether the returned value is less than, equal to, or greater than the original
value. (Although a NaN is not comparable to anything, converting a NaN to a NaN
will also return Ordering::Equals, indicating an exact conversion.)
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not exactly equal to any float of the target type, and
rm is Exact.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for i128
impl<'a> RoundingFrom<&'a Float> for i128
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i128, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i128, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for i16
impl<'a> RoundingFrom<&'a Float> for i16
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i16, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i16, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for i32
impl<'a> RoundingFrom<&'a Float> for i32
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i32, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i32, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for i64
impl<'a> RoundingFrom<&'a Float> for i64
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i64, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i64, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for i8
impl<'a> RoundingFrom<&'a Float> for i8
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i8, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (i8, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for isize
impl<'a> RoundingFrom<&'a Float> for isize
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (isize, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (isize, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for u128
impl<'a> RoundingFrom<&'a Float> for u128
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u128, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u128, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for u16
impl<'a> RoundingFrom<&'a Float> for u16
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u16, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u16, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for u32
impl<'a> RoundingFrom<&'a Float> for u32
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u32, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u32, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for u64
impl<'a> RoundingFrom<&'a Float> for u64
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u64, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u64, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for u8
impl<'a> RoundingFrom<&'a Float> for u8
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u8, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (u8, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl<'a> RoundingFrom<&'a Float> for usize
impl<'a> RoundingFrom<&'a Float> for usize
source§fn rounding_from(f: &'a Float, rm: RoundingMode) -> (usize, Ordering)
fn rounding_from(f: &'a Float, rm: RoundingMode) -> (usize, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by reference. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for Integer
impl RoundingFrom<Float> for Integer
source§fn rounding_from(f: Float, rm: RoundingMode) -> (Integer, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (Integer, Ordering)
Converts a Float to an Integer, using a specified RoundingMode and taking the
Float by value. An Ordering is also returned, indicating whether the returned value
is less than, equal to, or greater than the original value.
If the Float is NaN or infinite, the function will panic regardless of the rounding
mode.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float is NaN
or infinite.
Examples
use malachite_base::num::basic::traits::NegativeInfinity;
use malachite_base::num::conversion::traits::RoundingFrom;
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::strings::ToDebugString;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::rounding_from(Float::from(1.5), RoundingMode::Floor).to_debug_string(),
"(1, Less)"
);
assert_eq!(
Integer::rounding_from(Float::from(1.5), RoundingMode::Ceiling).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Integer::rounding_from(Float::from(1.5), RoundingMode::Nearest).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Integer::rounding_from(Float::from(-1.5), RoundingMode::Floor).to_debug_string(),
"(-2, Less)"
);
assert_eq!(
Integer::rounding_from(Float::from(-1.5), RoundingMode::Ceiling).to_debug_string(),
"(-1, Greater)"
);
assert_eq!(
Integer::rounding_from(Float::from(-1.5), RoundingMode::Nearest).to_debug_string(),
"(-2, Less)"
);source§impl RoundingFrom<Float> for Natural
impl RoundingFrom<Float> for Natural
source§fn rounding_from(f: Float, rm: RoundingMode) -> (Natural, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (Natural, Ordering)
Converts a Float to a Natural, using a specified RoundingMode and taking the
Float by value. An Ordering is also returned, indicating whether the returned value
is less than, equal to, or greater than the original value.
If the Float is negative (including negative infinity), then it will be rounded to zero
when the RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN or positive infinity, the function will panic regardless of the
rounding mode.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float is less
than zero and rm is not Down, Ceiling, or Nearest, or if the Float is NaN or
positive infinity.
Examples
use malachite_base::num::basic::traits::NegativeInfinity;
use malachite_base::num::conversion::traits::RoundingFrom;
use malachite_base::rounding_modes::RoundingMode;
use malachite_base::strings::ToDebugString;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(
Natural::rounding_from(Float::from(1.5), RoundingMode::Floor).to_debug_string(),
"(1, Less)"
);
assert_eq!(
Natural::rounding_from(Float::from(1.5), RoundingMode::Ceiling).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Natural::rounding_from(Float::from(1.5), RoundingMode::Nearest).to_debug_string(),
"(2, Greater)"
);
assert_eq!(
Natural::rounding_from(Float::NEGATIVE_INFINITY, RoundingMode::Down).to_debug_string(),
"(0, Greater)"
);
assert_eq!(
Natural::rounding_from(Float::NEGATIVE_INFINITY, RoundingMode::Ceiling)
.to_debug_string(),
"(0, Greater)"
);
assert_eq!(
Natural::rounding_from(Float::NEGATIVE_INFINITY, RoundingMode::Nearest)
.to_debug_string(),
"(0, Greater)"
);source§impl RoundingFrom<Float> for f32
impl RoundingFrom<Float> for f32
source§fn rounding_from(f: Float, rm: RoundingMode) -> (f32, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (f32, Ordering)
Converts a Float to a primitive float, using a specified RoundingMode and
taking the Float by value. An Ordering is also returned, indicating whether
the returned value is less than, equal to, or greater than the original value.
(Although a NaN is not comparable to anything, converting a NaN to a NaN will also
return Ordering::Equals, indicating an exact conversion.)
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not exactly equal to any float of the target type, and
rm is Exact.
Examples
See here.
source§impl RoundingFrom<Float> for f64
impl RoundingFrom<Float> for f64
source§fn rounding_from(f: Float, rm: RoundingMode) -> (f64, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (f64, Ordering)
Converts a Float to a primitive float, using a specified RoundingMode and
taking the Float by value. An Ordering is also returned, indicating whether
the returned value is less than, equal to, or greater than the original value.
(Although a NaN is not comparable to anything, converting a NaN to a NaN will also
return Ordering::Equals, indicating an exact conversion.)
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not exactly equal to any float of the target type, and
rm is Exact.
Examples
See here.
source§impl RoundingFrom<Float> for i128
impl RoundingFrom<Float> for i128
source§fn rounding_from(f: Float, rm: RoundingMode) -> (i128, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (i128, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for i16
impl RoundingFrom<Float> for i16
source§fn rounding_from(f: Float, rm: RoundingMode) -> (i16, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (i16, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for i32
impl RoundingFrom<Float> for i32
source§fn rounding_from(f: Float, rm: RoundingMode) -> (i32, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (i32, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for i64
impl RoundingFrom<Float> for i64
source§fn rounding_from(f: Float, rm: RoundingMode) -> (i64, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (i64, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for i8
impl RoundingFrom<Float> for i8
source§fn rounding_from(f: Float, rm: RoundingMode) -> (i8, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (i8, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for isize
impl RoundingFrom<Float> for isize
source§fn rounding_from(f: Float, rm: RoundingMode) -> (isize, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (isize, Ordering)
Converts a Float to a signed primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is less than the minimum representable value of the signed type
(including negative infinity), then it will be rounded to zero when the
RoundingMode is Ceiling, Down, or Nearest. Otherwise, this function will
panic.
If the Float is greater than the maximum representable value of the signed type
(including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is smaller than the minimum representable value of the signed type and rm is not
Down, Ceiling, or Nearest, if the Float is greater than the maximum
representable value of the signed type and rm is not Down, Floor, or
Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for u128
impl RoundingFrom<Float> for u128
source§fn rounding_from(f: Float, rm: RoundingMode) -> (u128, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (u128, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for u16
impl RoundingFrom<Float> for u16
source§fn rounding_from(f: Float, rm: RoundingMode) -> (u16, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (u16, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for u32
impl RoundingFrom<Float> for u32
source§fn rounding_from(f: Float, rm: RoundingMode) -> (u32, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (u32, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for u64
impl RoundingFrom<Float> for u64
source§fn rounding_from(f: Float, rm: RoundingMode) -> (u64, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (u64, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for u8
impl RoundingFrom<Float> for u8
source§fn rounding_from(f: Float, rm: RoundingMode) -> (u8, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (u8, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl RoundingFrom<Float> for usize
impl RoundingFrom<Float> for usize
source§fn rounding_from(f: Float, rm: RoundingMode) -> (usize, Ordering)
fn rounding_from(f: Float, rm: RoundingMode) -> (usize, Ordering)
Converts a Float to an unsigned primitive integer, using a specified
RoundingMode and taking the Float by value. An Ordering is also
returned, indicating whether the returned value is less than, equal to, or greater
than the original value.
If the Float is negative (including negative infinity), then it will be rounded
to zero when the RoundingMode is Ceiling, Down, or Nearest. Otherwise,
this function will panic.
If the Float is greater than the maximum representable value of the unsigned
type (including infinity), then it will be rounded to the maximum value when the
RoundingMode is Floor, Down, or Nearest. Otherwise, this function will
panic.
If the Float is NaN, the function will panic regardless of the rounding mode.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if the Float is not an integer and rm is Exact, or if the Float
is less than zero and rm is not Down, Ceiling, or Nearest, if the Float
is greater than the maximum representable value of the unsigned type and rm is
not Down, Floor, or Nearest, or if the Float is NaN.
Examples
See here.
source§impl SciMantissaAndExponent<Float, i64> for Float
impl SciMantissaAndExponent<Float, i64> for Float
source§fn sci_mantissa_and_exponent(self) -> (Float, i64)
fn sci_mantissa_and_exponent(self) -> (Float, i64)
Returns a Float’s scientific mantissa and exponent, taking the Float by value.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer
and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as
a Float.
$$
f(x) = (\frac{|x|}{2^{\lfloor \log_2 |x| \rfloor}}, \lfloor \log_2 |x| \rfloor).
$$
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::ONE.sci_mantissa_and_exponent(), (Float::ONE, 0));
let (m, e) = Float::from(std::f64::consts::PI).sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.5707963267948966");
assert_eq!(e, 1);
let (m, e) = Float::from(Natural::from(3u32).pow(50u64)).sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.187662594419065093441695");
assert_eq!(e, 79);
let (m, e) = Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
.sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.683979953059212693885095551367");
assert_eq!(e, -80);source§fn sci_exponent(self) -> i64
fn sci_exponent(self) -> i64
Returns a Float’s scientific exponent, taking the Float by value.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. $$ f(x) = \lfloor \log_2 |x| \rfloor. $$
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::ONE.sci_exponent(), 0);
assert_eq!(Float::from(std::f64::consts::PI).sci_exponent(), 1);
assert_eq!(Float::from(Natural::from(3u32).pow(50u64)).sci_exponent(), 79);
assert_eq!(
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0.sci_exponent(),
-80
);source§fn from_sci_mantissa_and_exponent(
sci_mantissa: Float,
sci_exponent: i64
) -> Option<Float>
fn from_sci_mantissa_and_exponent( sci_mantissa: Float, sci_exponent: i64 ) -> Option<Float>
Constructs a Float from its scientific mantissa and exponent.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$.
$$ f(x) = 2^{e_i}m_i. $$
If the mantissa is zero or not finite, this function panics. If it is finite but not in the
interval $[1, 2)$, this function returns None.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::{FromStringBase, SciMantissaAndExponent};
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::from_sci_mantissa_and_exponent(Float::ONE, 0).unwrap(), 1);
assert_eq!(
Float::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.921fb54442d18#53").unwrap(),
1
).unwrap(),
std::f64::consts::PI
);
assert_eq!(
Float::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.300aa7e1b65fa13bc792#80").unwrap(),
79
).unwrap(),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
Float::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.af194f6982497a23f9dc546d6#100").unwrap(),
-80
).unwrap(),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);source§fn sci_mantissa(self) -> M
fn sci_mantissa(self) -> M
source§impl<'a> SciMantissaAndExponent<Float, i64, Float> for &'a Float
impl<'a> SciMantissaAndExponent<Float, i64, Float> for &'a Float
source§fn sci_mantissa_and_exponent(self) -> (Float, i64)
fn sci_mantissa_and_exponent(self) -> (Float, i64)
Returns a Float’s scientific mantissa and exponent, taking the Float by reference.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer
and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as
a Float.
$$
f(x) = (\frac{|x|}{2^{\lfloor \log_2 |x| \rfloor}}, \lfloor \log_2 |x| \rfloor).
$$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!((&Float::ONE).sci_mantissa_and_exponent(), (Float::ONE, 0));
let (m, e): (Float, i64) = (&Float::from(std::f64::consts::PI))
.sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.5707963267948966");
assert_eq!(e, 1);
let (m, e): (Float, i64) = (&Float::from(Natural::from(3u32).pow(50u64)))
.sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.187662594419065093441695");
assert_eq!(e, 79);
let (m, e): (Float, i64) =
(&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0)
.sci_mantissa_and_exponent();
assert_eq!(m.to_string(), "1.683979953059212693885095551367");
assert_eq!(e, -80);source§fn sci_exponent(self) -> i64
fn sci_exponent(self) -> i64
Returns a Float’s scientific exponent, taking the Float by reference.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. $$ f(x) = \lfloor \log_2 |x| \rfloor. $$
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is zero or not finite.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(<&Float as SciMantissaAndExponent<Float, _, _>>::sci_exponent(&Float::ONE), 0);
assert_eq!(<&Float as SciMantissaAndExponent<Float, _, _>>::sci_exponent(
&Float::from(std::f64::consts::PI)),
1
);
assert_eq!(<&Float as SciMantissaAndExponent<Float, _, _>>::sci_exponent(
&Float::from(Natural::from(3u32).pow(50u64))),
79
);
assert_eq!(<&Float as SciMantissaAndExponent<Float, _, _>>::sci_exponent(
&Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0),
-80
);source§fn from_sci_mantissa_and_exponent(
sci_mantissa: Float,
sci_exponent: i64
) -> Option<Float>
fn from_sci_mantissa_and_exponent( sci_mantissa: Float, sci_exponent: i64 ) -> Option<Float>
Constructs a Float from its scientific mantissa and exponent.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$.
$$ f(x) = 2^{e_i}m_i. $$
If the mantissa is zero or not finite, this function panics. If it is finite but not in the
interval $[1, 2)$, this function returns None.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::{FromStringBase, SciMantissaAndExponent};
use malachite_float::Float;
use malachite_nz::natural::Natural;
use malachite_q::Rational;
use std::str::FromStr;
assert_eq!(Float::from_sci_mantissa_and_exponent(Float::ONE, 0).unwrap(), 1);
assert_eq!(
<&Float as SciMantissaAndExponent<Float, _, _>>::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.921fb54442d18#53").unwrap(),
1
).unwrap(),
std::f64::consts::PI
);
assert_eq!(
<&Float as SciMantissaAndExponent<Float, _, _>>::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.300aa7e1b65fa13bc792#80").unwrap(),
79
).unwrap(),
Natural::from(3u32).pow(50u64)
);
assert_eq!(
<&Float as SciMantissaAndExponent<Float, _, _>>::from_sci_mantissa_and_exponent(
Float::from_string_base(16, "0x1.af194f6982497a23f9dc546d6#100").unwrap(),
-80
).unwrap(),
Float::from_rational_prec(Rational::from(3u32).pow(-50i64), 100).0
);source§fn sci_mantissa(self) -> M
fn sci_mantissa(self) -> M
source§impl<'a> SciMantissaAndExponent<f32, i64, Float> for &'a Float
impl<'a> SciMantissaAndExponent<f32, i64, Float> for &'a Float
source§fn sci_mantissa_and_exponent(self) -> (f32, i64)
fn sci_mantissa_and_exponent(self) -> (f32, i64)
Returns a Float’s scientific mantissa and exponent, taking the Float by
value.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an
integer and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the
rational mantissa as a primitive float. The conversion might not be exact, so we
round to the nearest float using the Nearest rounding mode. To use other rounding
modes, use
sci_mantissa_and_exponent_round.
$$
f(x) \approx (\frac{|x|}{2^{\lfloor \log_2 |x| \rfloor}},
\lfloor \log_2 |x| \rfloor).
$$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is zero or not finite.
Examples
See here.
source§fn from_sci_mantissa_and_exponent(
sci_mantissa: f32,
sci_exponent: i64
) -> Option<Float>
fn from_sci_mantissa_and_exponent( sci_mantissa: f32, sci_exponent: i64 ) -> Option<Float>
Constructs a Float from its scientific mantissa and exponent.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$.
$$ f(x) = 2^{e_i}m_i. $$
If the mantissa is zero or not finite, this function panics. If it is finite but
not in the interval $[1, 2)$, this function returns None.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§fn sci_mantissa(self) -> M
fn sci_mantissa(self) -> M
source§fn sci_exponent(self) -> E
fn sci_exponent(self) -> E
source§impl<'a> SciMantissaAndExponent<f64, i64, Float> for &'a Float
impl<'a> SciMantissaAndExponent<f64, i64, Float> for &'a Float
source§fn sci_mantissa_and_exponent(self) -> (f64, i64)
fn sci_mantissa_and_exponent(self) -> (f64, i64)
Returns a Float’s scientific mantissa and exponent, taking the Float by
value.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an
integer and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the
rational mantissa as a primitive float. The conversion might not be exact, so we
round to the nearest float using the Nearest rounding mode. To use other rounding
modes, use
sci_mantissa_and_exponent_round.
$$
f(x) \approx (\frac{|x|}{2^{\lfloor \log_2 |x| \rfloor}},
\lfloor \log_2 |x| \rfloor).
$$
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Panics
Panics if self is zero or not finite.
Examples
See here.
source§fn from_sci_mantissa_and_exponent(
sci_mantissa: f64,
sci_exponent: i64
) -> Option<Float>
fn from_sci_mantissa_and_exponent( sci_mantissa: f64, sci_exponent: i64 ) -> Option<Float>
Constructs a Float from its scientific mantissa and exponent.
When $x$ is finite and nonzero, we can write $|x| = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$.
$$ f(x) = 2^{e_i}m_i. $$
If the mantissa is zero or not finite, this function panics. If it is finite but
not in the interval $[1, 2)$, this function returns None.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
source§fn sci_mantissa(self) -> M
fn sci_mantissa(self) -> M
source§fn sci_exponent(self) -> E
fn sci_exponent(self) -> E
source§impl Sign for Float
impl Sign for Float
source§fn sign(&self) -> Ordering
fn sign(&self) -> Ordering
Returns the sign of a Float.
Returns Greater if the sign is positive and Less if the sign is negative. Never returns
Equal. Positive infinity and positive zero have a positive sign, and negative infinity
and negative zero have a negative sign.
Worst-case complexity
Constant time and additional memory.
Panics
Panics if self is NaN.
Examples
use malachite_base::num::arithmetic::traits::Sign;
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero
};
use malachite_float::Float;
use std::cmp::Ordering;
assert_eq!(Float::INFINITY.sign(), Ordering::Greater);
assert_eq!(Float::NEGATIVE_INFINITY.sign(), Ordering::Less);
assert_eq!(Float::ZERO.sign(), Ordering::Greater);
assert_eq!(Float::NEGATIVE_ZERO.sign(), Ordering::Less);
assert_eq!(Float::ONE.sign(), Ordering::Greater);
assert_eq!(Float::NEGATIVE_ONE.sign(), Ordering::Less);source§impl<'a> SignificantBits for &'a Float
impl<'a> SignificantBits for &'a Float
source§fn significant_bits(self) -> u64
fn significant_bits(self) -> u64
Returns the number of significant bits of a Float. This is defined as follows:
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = 1, $$
and, if $x$ is finite and nonzero,
$$ f(x) = p, $$
where $p$ is the precision of $x$.
See also the complexity function.
Worst-case complexity
Constant time and additional memory.
Examples
use malachite_base::num::logic::traits::SignificantBits;
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.significant_bits(), 1);
assert_eq!(Float::ONE.significant_bits(), 1);
assert_eq!(Float::one_prec(100).significant_bits(), 100);
assert_eq!(Float::from(std::f64::consts::PI).significant_bits(), 53);
assert_eq!(Float::power_of_2(100u64).significant_bits(), 1);
assert_eq!(Float::power_of_2(-100i64).significant_bits(), 1);source§impl<'a> TryFrom<&'a Float> for Integer
impl<'a> TryFrom<&'a Float> for Integer
source§fn try_from(f: &'a Float) -> Result<Integer, Self::Error>
fn try_from(f: &'a Float) -> Result<Integer, Self::Error>
Converts a Float to an Integer, taking the Float by reference. If the Float
is not equal to an integer, an error is returned.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::from::SignedFromFloatError::*;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(Integer::try_from(&Float::ZERO).unwrap(), 0);
assert_eq!(Integer::try_from(&Float::from(123.0)).unwrap(), 123);
assert_eq!(Integer::try_from(&Float::from(-123.0)).unwrap(), -123);
assert_eq!(Integer::try_from(&Float::from(1.5)), Err(FloatNonIntegerOrOutOfRange));
assert_eq!(Integer::try_from(&Float::INFINITY), Err(FloatInfiniteOrNan));
assert_eq!(Integer::try_from(&Float::NAN), Err(FloatInfiniteOrNan));§type Error = SignedFromFloatError
type Error = SignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for Natural
impl<'a> TryFrom<&'a Float> for Natural
source§fn try_from(f: &'a Float) -> Result<Natural, Self::Error>
fn try_from(f: &'a Float) -> Result<Natural, Self::Error>
Converts a Float to a Natural, taking the Float by reference. If the Float
is not equal to a non-negative integer, an error is returned.
Both positive and negative zero convert to a Natural zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::from::UnsignedFromFloatError::*;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(Natural::try_from(&Float::ZERO).unwrap(), 0);
assert_eq!(Natural::try_from(&Float::from(123.0)).unwrap(), 123);
assert_eq!(Natural::try_from(&Float::from(-123.0)), Err(FloatNegative));
assert_eq!(Natural::try_from(&Float::from(1.5)), Err(FloatNonIntegerOrOutOfRange));
assert_eq!(Natural::try_from(&Float::INFINITY), Err(FloatInfiniteOrNan));
assert_eq!(Natural::try_from(&Float::NAN), Err(FloatInfiniteOrNan));§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for Rational
impl<'a> TryFrom<&'a Float> for Rational
source§fn try_from(x: &'a Float) -> Result<Rational, Self::Error>
fn try_from(x: &'a Float) -> Result<Rational, Self::Error>
Converts a Float to a Rational, taking the Float by reference. If the Float
is not finite, an error is returned.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is x.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_float::conversion::rational_from_float::RationalFromFloatError;
use malachite_float::Float;
use malachite_q::Rational;
assert_eq!(Rational::try_from(&Float::ZERO).unwrap(), 0);
assert_eq!(Rational::try_from(&Float::from(1.5)).unwrap().to_string(), "3/2");
assert_eq!(Rational::try_from(&Float::from(-1.5)).unwrap().to_string(), "-3/2");
assert_eq!(Rational::try_from(&Float::INFINITY), Err(RationalFromFloatError));
assert_eq!(Rational::try_from(&Float::NAN), Err(RationalFromFloatError));§type Error = RationalFromFloatError
type Error = RationalFromFloatError
source§impl<'a> TryFrom<&'a Float> for f32
impl<'a> TryFrom<&'a Float> for f32
source§impl<'a> TryFrom<&'a Float> for f64
impl<'a> TryFrom<&'a Float> for f64
source§impl<'a> TryFrom<&'a Float> for i128
impl<'a> TryFrom<&'a Float> for i128
source§impl<'a> TryFrom<&'a Float> for i16
impl<'a> TryFrom<&'a Float> for i16
source§impl<'a> TryFrom<&'a Float> for i32
impl<'a> TryFrom<&'a Float> for i32
source§impl<'a> TryFrom<&'a Float> for i64
impl<'a> TryFrom<&'a Float> for i64
source§impl<'a> TryFrom<&'a Float> for i8
impl<'a> TryFrom<&'a Float> for i8
source§impl<'a> TryFrom<&'a Float> for isize
impl<'a> TryFrom<&'a Float> for isize
source§impl<'a> TryFrom<&'a Float> for u128
impl<'a> TryFrom<&'a Float> for u128
source§fn try_from(f: &'a Float) -> Result<u128, Self::Error>
fn try_from(f: &'a Float) -> Result<u128, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for u16
impl<'a> TryFrom<&'a Float> for u16
source§fn try_from(f: &'a Float) -> Result<u16, Self::Error>
fn try_from(f: &'a Float) -> Result<u16, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for u32
impl<'a> TryFrom<&'a Float> for u32
source§fn try_from(f: &'a Float) -> Result<u32, Self::Error>
fn try_from(f: &'a Float) -> Result<u32, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for u64
impl<'a> TryFrom<&'a Float> for u64
source§fn try_from(f: &'a Float) -> Result<u64, Self::Error>
fn try_from(f: &'a Float) -> Result<u64, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for u8
impl<'a> TryFrom<&'a Float> for u8
source§fn try_from(f: &'a Float) -> Result<u8, Self::Error>
fn try_from(f: &'a Float) -> Result<u8, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Float> for usize
impl<'a> TryFrom<&'a Float> for usize
source§fn try_from(f: &'a Float) -> Result<usize, Self::Error>
fn try_from(f: &'a Float) -> Result<usize, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
reference. If the Float is not equal to an unsigned primitive integer of the
given type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl<'a> TryFrom<&'a Rational> for Float
impl<'a> TryFrom<&'a Rational> for Float
source§fn try_from(x: &'a Rational) -> Result<Float, Self::Error>
fn try_from(x: &'a Rational) -> Result<Float, Self::Error>
Converts a Rational to an Float, taking the Rational by reference. If the
Rational’s denominator is not a power of 2, an error is returned.
The Float’s precision is the number of significant bits of the numerator of the
Rational.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_q::conversion::primitive_float_from_rational::FloatFromRationalError;
use malachite_q::Rational;
assert_eq!(Float::try_from(&Rational::ZERO).unwrap(), 0);
assert_eq!(Float::try_from(&Rational::from_signeds(1, 8)).unwrap(), 0.125);
assert_eq!(Float::try_from(&Rational::from_signeds(-1, 8)).unwrap(), -0.125);
assert_eq!(Float::try_from(&Rational::from_signeds(1, 3)), Err(FloatFromRationalError));
assert_eq!(Float::try_from(&Rational::from_signeds(-1, 3)), Err(FloatFromRationalError));§type Error = FloatFromRationalError
type Error = FloatFromRationalError
source§impl TryFrom<Float> for Integer
impl TryFrom<Float> for Integer
source§fn try_from(f: Float) -> Result<Integer, Self::Error>
fn try_from(f: Float) -> Result<Integer, Self::Error>
Converts a Float to an Integer, taking the Float by value. If the Float is
not equal to an integer, an error is returned.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::from::SignedFromFloatError::*;
use malachite_float::Float;
use malachite_nz::integer::Integer;
assert_eq!(Integer::try_from(Float::ZERO).unwrap(), 0);
assert_eq!(Integer::try_from(Float::from(123.0)).unwrap(), 123);
assert_eq!(Integer::try_from(Float::from(-123.0)).unwrap(), -123);
assert_eq!(Integer::try_from(Float::from(1.5)), Err(FloatNonIntegerOrOutOfRange));
assert_eq!(Integer::try_from(Float::INFINITY), Err(FloatInfiniteOrNan));
assert_eq!(Integer::try_from(Float::NAN), Err(FloatInfiniteOrNan));§type Error = SignedFromFloatError
type Error = SignedFromFloatError
source§impl TryFrom<Float> for Natural
impl TryFrom<Float> for Natural
source§fn try_from(f: Float) -> Result<Natural, Self::Error>
fn try_from(f: Float) -> Result<Natural, Self::Error>
Converts a Float to a Natural, taking the Float by value. If the Float is
not equal to a non-negative integer, an error is returned.
Both positive and negative zero convert to a Natural zero.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is f.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_base::num::conversion::from::UnsignedFromFloatError::*;
use malachite_float::Float;
use malachite_nz::natural::Natural;
assert_eq!(Natural::try_from(Float::ZERO).unwrap(), 0);
assert_eq!(Natural::try_from(Float::from(123.0)).unwrap(), 123);
assert_eq!(Natural::try_from(Float::from(-123.0)), Err(FloatNegative));
assert_eq!(Natural::try_from(Float::from(1.5)), Err(FloatNonIntegerOrOutOfRange));
assert_eq!(Natural::try_from(Float::INFINITY), Err(FloatInfiniteOrNan));
assert_eq!(Natural::try_from(Float::NAN), Err(FloatInfiniteOrNan));§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for Rational
impl TryFrom<Float> for Rational
source§fn try_from(x: Float) -> Result<Rational, Self::Error>
fn try_from(x: Float) -> Result<Rational, Self::Error>
Converts a Float to a Rational, taking the Float by value. If the Float is
not finite, an error is returned.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is x.complexity().
Examples
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_float::conversion::rational_from_float::RationalFromFloatError;
use malachite_float::Float;
use malachite_q::Rational;
assert_eq!(Rational::try_from(Float::ZERO).unwrap(), 0);
assert_eq!(Rational::try_from(Float::from(1.5)).unwrap().to_string(), "3/2");
assert_eq!(Rational::try_from(Float::from(-1.5)).unwrap().to_string(), "-3/2");
assert_eq!(Rational::try_from(Float::INFINITY), Err(RationalFromFloatError));
assert_eq!(Rational::try_from(Float::NAN), Err(RationalFromFloatError));§type Error = RationalFromFloatError
type Error = RationalFromFloatError
source§impl TryFrom<Float> for f32
impl TryFrom<Float> for f32
source§impl TryFrom<Float> for f64
impl TryFrom<Float> for f64
source§impl TryFrom<Float> for i128
impl TryFrom<Float> for i128
source§impl TryFrom<Float> for i16
impl TryFrom<Float> for i16
source§impl TryFrom<Float> for i32
impl TryFrom<Float> for i32
source§impl TryFrom<Float> for i64
impl TryFrom<Float> for i64
source§impl TryFrom<Float> for i8
impl TryFrom<Float> for i8
source§impl TryFrom<Float> for isize
impl TryFrom<Float> for isize
source§impl TryFrom<Float> for u128
impl TryFrom<Float> for u128
source§fn try_from(f: Float) -> Result<u128, Self::Error>
fn try_from(f: Float) -> Result<u128, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for u16
impl TryFrom<Float> for u16
source§fn try_from(f: Float) -> Result<u16, Self::Error>
fn try_from(f: Float) -> Result<u16, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for u32
impl TryFrom<Float> for u32
source§fn try_from(f: Float) -> Result<u32, Self::Error>
fn try_from(f: Float) -> Result<u32, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for u64
impl TryFrom<Float> for u64
source§fn try_from(f: Float) -> Result<u64, Self::Error>
fn try_from(f: Float) -> Result<u64, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for u8
impl TryFrom<Float> for u8
source§fn try_from(f: Float) -> Result<u8, Self::Error>
fn try_from(f: Float) -> Result<u8, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Float> for usize
impl TryFrom<Float> for usize
source§fn try_from(f: Float) -> Result<usize, Self::Error>
fn try_from(f: Float) -> Result<usize, Self::Error>
Converts a Float to a primitive unsigned integer, taking the Float by
value. If the Float is not equal to an unsigned primitive integer of the given
type, an error is returned.
Both positive and negative zero convert to a primitive unsigned integer zero.
Worst-case complexity
Constant time and additional memory.
Examples
See here.
§type Error = UnsignedFromFloatError
type Error = UnsignedFromFloatError
source§impl TryFrom<Rational> for Float
impl TryFrom<Rational> for Float
source§fn try_from(x: Rational) -> Result<Float, Self::Error>
fn try_from(x: Rational) -> Result<Float, Self::Error>
Converts a Rational to an Float, taking the Rational by value. If the
Rational’s denominator is not a power of 2, an error is returned.
The Float’s precision is the number of significant bits of the numerator of the
Rational.
Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().
Examples
use malachite_base::num::basic::traits::Zero;
use malachite_float::Float;
use malachite_q::conversion::primitive_float_from_rational::FloatFromRationalError;
use malachite_q::Rational;
assert_eq!(Float::try_from(Rational::ZERO).unwrap(), 0);
assert_eq!(Float::try_from(Rational::from_signeds(1, 8)).unwrap(), 0.125);
assert_eq!(Float::try_from(Rational::from_signeds(-1, 8)).unwrap(), -0.125);
assert_eq!(Float::try_from(Rational::from_signeds(1, 3)), Err(FloatFromRationalError));
assert_eq!(Float::try_from(Rational::from_signeds(-1, 3)), Err(FloatFromRationalError));