1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
use crate::Float;
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_base::num::logic::traits::SignificantBits;
use malachite_nz::integer::Integer;
use std::cmp::Ordering;

impl PartialOrdAbs<Integer> for Float {
    /// Compares the absolute values of a [`Float`] and an [`Integer`].
    ///
    /// NaN is not comparable to any [`Integer`]. Infinity and negative infinity are greater in
    /// absolute value than any [`Integer`]. Both the [`Float`] zero and the [`Float`] negative
    /// zero are equal to the [`Integer`] zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
    /// use malachite_base::num::comparison::traits::PartialOrdAbs;
    /// use malachite_float::Float;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert!(Float::from(80).lt_abs(&Integer::from(100)));
    /// assert!(Float::from(-80).lt_abs(&Integer::from(-100)));
    /// assert!(Float::INFINITY.gt_abs(&Integer::from(100)));
    /// assert!(Float::NEGATIVE_INFINITY.gt_abs(&Integer::from(-100)));
    /// ```
    fn partial_cmp_abs(&self, other: &Integer) -> Option<Ordering> {
        match (self, other) {
            (float_nan!(), _) => None,
            (float_infinity!(), _) | (float_negative_infinity!(), _) => Some(Ordering::Greater),
            (float_either_zero!(), y) => Some(if *y == 0 {
                Ordering::Equal
            } else {
                Ordering::Less
            }),
            (
                Float(Finite {
                    exponent: e_x,
                    significand: x,
                    ..
                }),
                y,
            ) => Some(if *other == 0 {
                Ordering::Greater
            } else if *e_x <= 0 {
                Ordering::Less
            } else {
                e_x.unsigned_abs()
                    .cmp(&other.significant_bits())
                    .then_with(|| x.cmp_normalized(y.unsigned_abs_ref()))
            }),
        }
    }
}

impl PartialOrdAbs<Float> for Integer {
    /// Compares the absolute values of an [`Integer`] and a [`Float`].
    ///
    /// No [`Integer`] is comparable to NaN. Every [`Integer`] is smaller in absolute value than
    /// infinity and negative infinity. The [`Integer`] zero is equal to both the [`Float`] zero
    /// and the [`Float`] negative zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
    /// use malachite_base::num::comparison::traits::PartialOrdAbs;
    /// use malachite_float::Float;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert!(Integer::from(100).gt_abs(&Float::from(80)));
    /// assert!(Integer::from(100).lt_abs(&Float::INFINITY));
    /// assert!(Integer::from(-100).lt_abs(&Float::INFINITY));
    /// assert!(Integer::from(-100).lt_abs(&Float::NEGATIVE_INFINITY));
    /// ```
    #[inline]
    fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering> {
        other.partial_cmp_abs(self).map(Ordering::reverse)
    }
}