1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::InnerFloat::{Finite, Zero};
use crate::{significand_bits, Float};
use malachite_base::num::basic::traits::Zero as ZeroTrait;
use malachite_base::num::conversion::traits::{ConvertibleFrom, ExactFrom};
use malachite_nz::integer::Integer;
use malachite_q::Rational;

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct RationalFromFloatError;

impl TryFrom<Float> for Rational {
    type Error = RationalFromFloatError;

    /// Converts a [`Float`] to a [`Rational`], taking the [`Float`] by value. If the [`Float`] is
    /// not finite, an error is returned.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `x.complexity()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
    /// use malachite_float::conversion::rational_from_float::RationalFromFloatError;
    /// use malachite_float::Float;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::try_from(Float::ZERO).unwrap(), 0);
    /// assert_eq!(Rational::try_from(Float::from(1.5)).unwrap().to_string(), "3/2");
    /// assert_eq!(Rational::try_from(Float::from(-1.5)).unwrap().to_string(), "-3/2");
    ///
    /// assert_eq!(Rational::try_from(Float::INFINITY), Err(RationalFromFloatError));
    /// assert_eq!(Rational::try_from(Float::NAN), Err(RationalFromFloatError));
    /// ```
    fn try_from(x: Float) -> Result<Rational, Self::Error> {
        match x {
            float_either_zero!() => Ok(Rational::ZERO),
            Float(Finite {
                sign,
                exponent,
                significand,
                ..
            }) => {
                let bits = significand_bits(&significand);
                Ok(
                    Rational::from(Integer::from_sign_and_abs(sign, significand))
                        << (exponent - i64::exact_from(bits)),
                )
            }
            _ => Err(RationalFromFloatError),
        }
    }
}

impl<'a> TryFrom<&'a Float> for Rational {
    type Error = RationalFromFloatError;

    /// Converts a [`Float`] to a [`Rational`], taking the [`Float`] by reference. If the [`Float`]
    /// is not finite, an error is returned.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `x.complexity()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
    /// use malachite_float::conversion::rational_from_float::RationalFromFloatError;
    /// use malachite_float::Float;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::try_from(&Float::ZERO).unwrap(), 0);
    /// assert_eq!(Rational::try_from(&Float::from(1.5)).unwrap().to_string(), "3/2");
    /// assert_eq!(Rational::try_from(&Float::from(-1.5)).unwrap().to_string(), "-3/2");
    ///
    /// assert_eq!(Rational::try_from(&Float::INFINITY), Err(RationalFromFloatError));
    /// assert_eq!(Rational::try_from(&Float::NAN), Err(RationalFromFloatError));
    /// ```
    fn try_from(x: &'a Float) -> Result<Rational, Self::Error> {
        match x {
            float_either_zero!() => Ok(Rational::ZERO),
            Float(Finite {
                sign,
                exponent,
                significand,
                ..
            }) => {
                let bits = significand_bits(significand);
                Ok(
                    Rational::from(Integer::from_sign_and_abs_ref(*sign, significand))
                        << (exponent - i64::exact_from(bits)),
                )
            }
            _ => Err(RationalFromFloatError),
        }
    }
}

impl<'a> ConvertibleFrom<&'a Float> for Rational {
    /// Determines whether a [`Float`] can be converted to a [`Rational`] (which is when the
    /// [`Float`] is finite), taking the [`Float`] by reference.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
    /// use malachite_base::num::conversion::traits::ConvertibleFrom;
    /// use malachite_float::Float;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::convertible_from(&Float::ZERO), true);
    /// assert_eq!(Rational::convertible_from(&Float::from(123.0)), true);
    /// assert_eq!(Rational::convertible_from(&Float::from(-123.0)), true);
    /// assert_eq!(Rational::convertible_from(&Float::from(1.5)), true);
    ///
    /// assert_eq!(Rational::convertible_from(&Float::INFINITY), false);
    /// assert_eq!(Rational::convertible_from(&Float::NAN), false);
    /// ```
    #[inline]
    fn convertible_from(x: &'a Float) -> bool {
        x.is_finite()
    }
}