1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use crate::{significand_bits, Float};
use malachite_base::num::arithmetic::traits::Sign;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_q::Rational;
use std::cmp::Ordering;
pub fn float_partial_cmp_rational_alt(x: &Float, other: &Rational) -> Option<Ordering> {
match (x, other) {
(float_nan!(), _) => None,
(float_infinity!(), _) => Some(Ordering::Greater),
(float_negative_infinity!(), _) => Some(Ordering::Less),
(float_either_zero!(), y) => 0u32.partial_cmp(y),
(
Float(Finite {
sign: s_x,
exponent: e_x,
..
}),
y,
) => Some(if *y == 0u32 {
if *s_x {
Ordering::Greater
} else {
Ordering::Less
}
} else {
let s_cmp = s_x.cmp(&(*y > 0));
if s_cmp != Ordering::Equal {
return Some(s_cmp);
}
let ord_cmp = (e_x - 1).cmp(&other.floor_log_base_2_abs());
if ord_cmp != Ordering::Equal {
if *s_x {
ord_cmp
} else {
ord_cmp.reverse()
}
} else {
Rational::try_from(x).unwrap().cmp(other)
}
}),
}
}
impl PartialOrd<Rational> for Float {
/// Compares a [`Float`] to a [`Rational`].
///
/// NaN is not comparable to any [`Rational`]. Infinity is greater than any [`Rational`], and
/// negative infinity is less. Both the [`Float`] zero and the [`Float`] negative zero are
/// equal to the [`Rational`] zero.
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
/// use malachite_float::Float;
/// use malachite_q::Rational;
///
/// assert!(Float::from(80) < Rational::from(100));
/// assert!(Float::from(-80) > Rational::from(-100));
/// assert!(Float::INFINITY > Rational::from(100));
/// assert!(Float::NEGATIVE_INFINITY < Rational::from(-100));
/// assert!(Float::from(1.0f64 / 3.0) < Rational::from_unsigneds(1u8, 3));
/// ```
fn partial_cmp(&self, other: &Rational) -> Option<Ordering> {
match (self, other) {
(float_nan!(), _) => None,
(float_infinity!(), _) => Some(Ordering::Greater),
(float_negative_infinity!(), _) => Some(Ordering::Less),
(float_either_zero!(), y) => 0u32.partial_cmp(y),
(
Float(Finite {
sign: s_x,
exponent: e_x,
significand: significand_x,
..
}),
y,
) => Some(if *y == 0u32 {
if *s_x {
Ordering::Greater
} else {
Ordering::Less
}
} else {
let s_cmp = s_x.cmp(&(*y > 0));
if s_cmp != Ordering::Equal {
return Some(s_cmp);
}
let ord_cmp = (e_x - 1).cmp(&other.floor_log_base_2_abs());
if ord_cmp != Ordering::Equal {
if *s_x {
ord_cmp
} else {
ord_cmp.reverse()
}
} else {
let shift = e_x - i64::exact_from(significand_bits(significand_x));
let abs_shift = shift.unsigned_abs();
let prod_cmp = match shift.sign() {
Ordering::Equal => {
(significand_x * other.denominator_ref()).cmp(other.numerator_ref())
}
Ordering::Greater => ((significand_x * other.denominator_ref())
<< abs_shift)
.cmp(other.numerator_ref()),
Ordering::Less => {
let n_trailing_zeros = significand_x.trailing_zeros().unwrap();
if abs_shift <= n_trailing_zeros {
((significand_x >> abs_shift) * other.denominator_ref())
.cmp(other.numerator_ref())
} else {
((significand_x >> n_trailing_zeros) * other.denominator_ref())
.cmp(&(other.numerator_ref() << (abs_shift - n_trailing_zeros)))
}
}
};
if *s_x {
prod_cmp
} else {
prod_cmp.reverse()
}
}
}),
}
}
}
impl PartialOrd<Float> for Rational {
/// Compares an [`Rational`] to a [`Float`].
///
/// No [`Rational`] is comparable to NaN. Every [`Rational`] is smaller than infinity and
/// greater than negative infinity. The [`Rational`] zero is equal to both the [`Float`] zero
/// and the [`Float`] negative zero.
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
/// use malachite_float::Float;
/// use malachite_q::Rational;
///
/// assert!(Rational::from(100) > Float::from(80));
/// assert!(Rational::from(-100) < Float::from(-80));
/// assert!(Rational::from(100) < Float::INFINITY);
/// assert!(Rational::from(-100) > Float::NEGATIVE_INFINITY);
/// assert!(Rational::from_unsigneds(1u8, 3) > Float::from(1.0f64 / 3.0));
/// ```
#[inline]
fn partial_cmp(&self, other: &Float) -> Option<Ordering> {
other.partial_cmp(self).map(Ordering::reverse)
}
}