1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
use crate::Float;
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use malachite_base::num::logic::traits::SignificantBits;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
impl PartialOrd<Natural> for Float {
/// Compares a [`Float`] to a [`Natural`].
///
/// NaN is not comparable to any [`Natural`]. Infinity is greater than any [`Natural`], and
/// negative infinity is less. Both the [`Float`] zero and the [`Float`] negative zero are
/// equal to the [`Natural`] zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `min(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
/// use malachite_float::Float;
/// use malachite_nz::natural::Natural;
///
/// assert!(Float::from(80) < Natural::from(100u32));
/// assert!(Float::INFINITY > Natural::from(100u32));
/// assert!(Float::NEGATIVE_INFINITY < Natural::from(100u32));
/// ```
fn partial_cmp(&self, other: &Natural) -> Option<Ordering> {
match (self, other) {
(float_nan!(), _) => None,
(float_infinity!(), _) => Some(Ordering::Greater),
(float_negative_infinity!(), _) => Some(Ordering::Less),
(float_either_zero!(), _) => Some(if *other == 0u32 {
Ordering::Equal
} else {
Ordering::Less
}),
(
Float(Finite {
sign: s_x,
exponent: e_x,
significand: x,
..
}),
y,
) => Some(if !s_x {
Ordering::Less
} else if *other == 0u32 {
Ordering::Greater
} else if *e_x <= 0 {
Ordering::Less
} else {
e_x.unsigned_abs()
.cmp(&other.significant_bits())
.then_with(|| x.cmp_normalized(y))
}),
}
}
}
impl PartialOrd<Float> for Natural {
/// Compares a [`Natural`] to a [`Float`].
///
/// No [`Natural`] is comparable to NaN. Every [`Natural`] is smaller than infinity and greater
/// than negative infinity. The [`Natural`] zero is equal to both the [`Float`] zero and the
/// [`Float`] negative zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `min(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
/// use malachite_float::Float;
/// use malachite_nz::natural::Natural;
///
/// assert!(Natural::from(100u32) > Float::from(80));
/// assert!(Natural::from(100u32) < Float::INFINITY);
/// assert!(Natural::from(100u32) > Float::NEGATIVE_INFINITY);
/// ```
#[inline]
fn partial_cmp(&self, other: &Float) -> Option<Ordering> {
other.partial_cmp(self).map(Ordering::reverse)
}
}