1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
use crate::Float;
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use malachite_base::num::arithmetic::traits::UnsignedAbs;
use malachite_base::num::basic::signeds::PrimitiveSigned;
use malachite_base::num::basic::unsigneds::PrimitiveUnsigned;
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
fn float_partial_cmp_abs_unsigned<T: PrimitiveUnsigned>(x: &Float, y: &T) -> Option<Ordering>
where
Natural: From<T>,
{
match (x, y) {
(float_nan!(), _) => None,
(float_infinity!(), _) | (float_negative_infinity!(), _) => Some(Ordering::Greater),
(float_either_zero!(), y) => Some(if *y == T::ZERO {
Ordering::Equal
} else {
Ordering::Less
}),
(
Float(Finite {
exponent: e_x,
significand: sig_x,
..
}),
y,
) => Some(if *y == T::ZERO {
Ordering::Greater
} else if *e_x <= 0 {
Ordering::Less
} else {
e_x.unsigned_abs()
.cmp(&y.significant_bits())
.then_with(|| sig_x.cmp_normalized(&Natural::from(*y)))
}),
}
}
macro_rules! impl_from_unsigned {
($t: ident) => {
impl PartialOrdAbs<$t> for Float {
/// Compares the absolute values of a [`Float`] and an unsigned primitive integer.
///
/// NaN is not comparable to any primitive integer. Infinity and negative infinity are
/// greater in absolute value than any primitive integer. Both the [`Float`] zero and
/// the [`Float`] negative zero are equal to the integer zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Examples
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
float_partial_cmp_abs_unsigned(self, other)
}
}
impl PartialOrdAbs<Float> for $t {
/// Compares the absolute values of an unsigned primitive integer and a [`Float`].
///
/// No primitive integer is comparable to NaN. Every primitive integer is smaller in
/// absolute value than infinity and negative infinity. The integer zero is equal to
/// both the [`Float`] zero and the [`Float`] negative zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
///
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering> {
other.partial_cmp_abs(self).map(Ordering::reverse)
}
}
};
}
apply_to_unsigneds!(impl_from_unsigned);
fn float_partial_cmp_abs_signed<T: PrimitiveSigned>(x: &Float, y: &T) -> Option<Ordering>
where
Natural: From<<T as UnsignedAbs>::Output>,
{
match (x, y) {
(float_nan!(), _) => None,
(float_infinity!(), _) | (float_negative_infinity!(), _) => Some(Ordering::Greater),
(float_either_zero!(), y) => Some(if *y == T::ZERO {
Ordering::Equal
} else {
Ordering::Less
}),
(
Float(Finite {
exponent: e_x,
significand: sig_x,
..
}),
y,
) => Some(if *y == T::ZERO {
Ordering::Greater
} else if *e_x <= 0 {
Ordering::Less
} else {
e_x.unsigned_abs()
.cmp(&y.significant_bits())
.then_with(|| sig_x.cmp_normalized(&Natural::from(y.unsigned_abs())))
}),
}
}
macro_rules! impl_from_signed {
($t: ident) => {
impl PartialOrdAbs<$t> for Float {
/// Compares the absolute values of a [`Float`] and a signed primitive integer.
///
/// NaN is not comparable to any primitive integer. Infinity and negative infinity are
/// greater in absolute value than any primitive integer. Both the [`Float`] zero and
/// the [`Float`] negative zero are equal to the integer zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Examples
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
float_partial_cmp_abs_signed(self, other)
}
}
impl PartialOrdAbs<Float> for $t {
/// Compares the absolute values of a signed primitive integer and a [`Float`].
///
/// No primitive integer is comparable to NaN. Every primitive integer is smaller in
/// absolute value than infinity and negative infinity. The integer zero is equal to
/// both the [`Float`] zero and the [`Float`] negative zero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
///
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering> {
other.partial_cmp_abs(self).map(Ordering::reverse)
}
}
};
}
apply_to_signeds!(impl_from_signed);