1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::Float;
use malachite_base::num::basic::signeds::PrimitiveSigned;
use malachite_base::num::basic::unsigneds::PrimitiveUnsigned;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;

impl Float {
    #[doc(hidden)]
    #[inline]
    pub fn from_unsigned_times_power_of_2<T: PrimitiveUnsigned>(x: T, pow: i64) -> Float
    where
        Natural: From<T>,
    {
        Float::from_natural_times_power_of_2(Natural::from(x), pow)
    }

    #[doc(hidden)]
    #[inline]
    pub fn from_unsigned_times_power_of_2_prec_round<T: PrimitiveUnsigned>(
        x: T,
        pow: i64,
        prec: u64,
        rm: RoundingMode,
    ) -> (Float, Ordering)
    where
        Natural: From<T>,
    {
        Float::from_natural_times_power_of_2_prec_round(Natural::from(x), pow, prec, rm)
    }

    #[doc(hidden)]
    #[inline]
    pub fn from_unsigned_times_power_of_2_prec<T: PrimitiveUnsigned>(
        x: T,
        pow: i64,
        prec: u64,
    ) -> (Float, Ordering)
    where
        Natural: From<T>,
    {
        Float::from_natural_times_power_of_2_prec(Natural::from(x), pow, prec)
    }

    /// Converts a primitive unsigned integer to a [`Float`]. If the [`Float`] is nonzero, it has
    /// the specified precision. If rounding is needed, the specified rounding mode is used. An
    /// [`Ordering`] is also returned, indicating whether the returned value is less than, equal
    /// to, or greater than the original value.
    ///
    /// If you're only using [`RoundingMode::Nearest`], try using [`Float::from_unsigned_prec`]
    /// instead.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
    ///
    /// # Examples
    /// See [here](super::from_primitive_int#from_unsigned_prec_round).
    #[inline]
    pub fn from_unsigned_prec_round<T: PrimitiveUnsigned>(
        x: T,
        prec: u64,
        rm: RoundingMode,
    ) -> (Float, Ordering)
    where
        Natural: From<T>,
    {
        Float::from_natural_prec_round(Natural::from(x), prec, rm)
    }

    /// Converts an unsigned primitive integer to a [`Float`]. If the [`Float`] is nonzero, it has
    /// the specified precision. An [`Ordering`] is also returned, indicating whether the returned
    /// value is less than, equal to, or greater than the original value.
    ///
    /// If you want the [`Float`]'s precision to be equal to the integer's number of significant
    /// bits, try just using `Float::from` instead.
    ///
    /// Rounding may occur, in which case [`RoundingMode::Nearest`] is used by default. To specify
    /// a rounding mode as well as a precision, try [`Float::from_unsigned_prec_round`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
    ///
    /// # Examples
    /// See [here](super::from_primitive_int#from_unsigned_prec).
    #[inline]
    pub fn from_unsigned_prec<T: PrimitiveUnsigned>(x: T, prec: u64) -> (Float, Ordering)
    where
        Natural: From<T>,
    {
        Float::from_natural_prec(Natural::from(x), prec)
    }

    #[doc(hidden)]
    #[inline]
    pub fn from_signed_times_power_of_2<T: PrimitiveSigned>(x: T, pow: i64) -> Float
    where
        Integer: From<T>,
    {
        Float::from_integer_times_power_of_2(Integer::from(x), pow)
    }

    #[doc(hidden)]
    #[inline]
    pub fn from_signed_times_power_of_2_prec_round<T: PrimitiveSigned>(
        x: T,
        pow: i64,
        prec: u64,
        rm: RoundingMode,
    ) -> (Float, Ordering)
    where
        Integer: From<T>,
    {
        Float::from_integer_times_power_of_2_prec_round(Integer::from(x), pow, prec, rm)
    }

    #[doc(hidden)]
    #[inline]
    pub fn from_signed_times_power_of_2_prec<T: PrimitiveSigned>(
        x: T,
        pow: i64,
        prec: u64,
    ) -> (Float, Ordering)
    where
        Integer: From<T>,
    {
        Float::from_integer_times_power_of_2_prec(Integer::from(x), pow, prec)
    }

    /// Converts a primitive signed integer to a [`Float`]. If the [`Float`] is nonzero, it has the
    /// specified precision. If rounding is needed, the specified rounding mode is used. An
    /// [`Ordering`] is also returned, indicating whether the returned value is less than, equal
    /// to, or greater than the original value.
    ///
    /// If you're only using [`RoundingMode::Nearest`], try using [`Float::from_signed_prec`]
    /// instead.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
    ///
    /// # Examples
    /// See [here](super::from_primitive_int#from_signed_prec_round).
    #[inline]
    pub fn from_signed_prec_round<T: PrimitiveSigned>(
        x: T,
        prec: u64,
        rm: RoundingMode,
    ) -> (Float, Ordering)
    where
        Integer: From<T>,
    {
        Float::from_integer_prec_round(Integer::from(x), prec, rm)
    }

    /// Converts a signed primitive integer to a [`Float`]. If the [`Float`] is nonzero, it has the
    /// specified precision. An [`Ordering`] is also returned, indicating whether the returned
    /// value is less than, equal to, or greater than the original value.
    ///
    /// If you want the [`Float`]'s precision to be equal to the integer's number of significant
    /// bits, try just using `Float::from` instead.
    ///
    /// Rounding may occur, in which case [`RoundingMode::Nearest`] is used by default. To specify
    /// a rounding mode as well as a precision, try [`Float::from_signed_prec_round`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
    ///
    /// # Examples
    /// See [here](super::from_primitive_int#from_signed_prec).
    #[inline]
    pub fn from_signed_prec<T: PrimitiveSigned>(x: T, prec: u64) -> (Float, Ordering)
    where
        Integer: From<T>,
    {
        Float::from_integer_prec(Integer::from(x), prec)
    }
}

macro_rules! impl_from_unsigned {
    ($t: ident) => {
        impl From<$t> for Float {
            /// Converts an unsigned primitive integer to a [`Float`].
            ///
            /// If the integer is nonzero, the precision of the [`Float`] is equal to the integer's
            /// number of significant bits. If you want to specify a different precision, try
            /// [`Float::from_unsigned_prec`]. This may require rounding, which uses
            /// [`RoundingMode::Nearest`] by default. To specify a rounding mode as well as a
            /// precision, try [`Float::from_unsigned_prec_round`].
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from_primitive_int#from).
            #[inline]
            fn from(u: $t) -> Float {
                Float::from(Natural::from(u))
            }
        }
    };
}
apply_to_unsigneds!(impl_from_unsigned);

macro_rules! impl_from_signed {
    ($t: ident) => {
        impl From<$t> for Float {
            /// Converts a signed primitive integer to a [`Float`].
            ///
            /// If the integer is nonzero, the precision of the [`Float`] is equal to the integer's
            /// number of significant bits. If you want to specify a different precision, try
            /// [`Float::from_signed_prec`]. This may require rounding, which uses
            /// [`RoundingMode::Nearest`] by default. To specify a rounding mode as well as a
            /// precision, try [`Float::from_signed_prec_round`].
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from_primitive_int#from).
            #[inline]
            fn from(i: $t) -> Float {
                Float::from(Integer::from(i))
            }
        }
    };
}
apply_to_signeds!(impl_from_signed);