webots-bindings 0.8.0

Webots bindings for Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
// Copyright 1996-2023 Cyberbotics Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "Scene.hpp"

#include "Camera.hpp"
#include "ColorUtils.hpp"
#include "Config.hpp"
#include "Constants.hpp"
#include "ContainerUtils.hpp"
#include "Debug.hpp"
#include "DirectionalLight.hpp"
#include "GlState.hpp"
#include "GlUser.hpp"
#include "Id.hpp"
#include "Material.hpp"
#include "Node.hpp"
#include "Overlay.hpp"
#include "PbrMaterial.hpp"
#include "PhongMaterial.hpp"
#include "PointLight.hpp"
#include "Renderable.hpp"
#include "ShaderProgram.hpp"
#include "ShadowVolumeCaster.hpp"
#include "SpotLight.hpp"
#include "Transform.hpp"
#include "UniformBuffer.hpp"
#include "Viewport.hpp"

#include <wren/renderable.h>
#include <wren/scene.h>

#ifdef __EMSCRIPTEN__
#include <GL/gl.h>
#include <GLES3/gl3.h>
#else
#include <glad/glad.h>
#endif

#include <algorithm>
#include <memory>

#define INVERSE_LOG2 1.442695

namespace wren {

  Scene *Scene::cInstance = NULL;

  Scene *Scene::instance() {
    if (!Scene::cInstance)
      Scene::cInstance = new Scene();

    return Scene::cInstance;
  }

  void Scene::init() {
    if (glstate::isInitialized())
      return;

    glstate::init();
  }

  void Scene::applyPendingUpdates() {
    // Apply OpenGL state changes
    GlUser::applyGl();
  }

  void Scene::reset() {
    IdPhongMaterial::resetCounter();
    IdPbrMaterial::resetCounter();
    IdMesh::resetCounter();

    mDirectionalLightsActive.clear();
    mPointLightsActive.clear();
    mSpotLightsActive.clear();

    mDirectionalLightsInactive.clear();
    mPointLightsInactive.clear();
    mSpotLightsInactive.clear();

    // Apply modifications before reset
    GlUser::applyGl();

    debug::printCacheContents();

    // Check for leaks
    assert(!PhongMaterial::cachedItemCount());
    assert(!PbrMaterial::cachedItemCount());
    assert(!StaticMesh::cachedItemCount());
    assert(!Texture2d::cachedItemCount());
  }

  void Scene::getMainBuffer(int width, int height, unsigned int format, unsigned int data_type, unsigned int buffer_type,
                            void *buffer) {
    assert(buffer_type == GL_FRONT || buffer_type == GL_BACK);
    glstate::bindFrameBuffer(0);
    glReadBuffer(buffer_type);
    glReadPixels(0, 0, width, height, format, data_type, buffer);
  }

  void Scene::initFrameCapture(int pixelBufferCount, unsigned int *pixelBufferIds, int frameSize) {
    mPixelBufferCount = pixelBufferCount;
    mPixelBufferIds = pixelBufferIds;
    glGenBuffers(mPixelBufferCount, mPixelBufferIds);
    for (int i = 0; i < mPixelBufferCount; ++i) {
      glBindBuffer(GL_PIXEL_PACK_BUFFER, mPixelBufferIds[i]);
      glBufferData(GL_PIXEL_PACK_BUFFER, frameSize, NULL, GL_STREAM_READ);
    }
  }

  void Scene::bindPixelBuffer(int buffer) {
    glBindBuffer(GL_PIXEL_PACK_BUFFER, buffer);
  }

  void *Scene::mapPixelBuffer(unsigned int accessMode) {
#ifdef __EMSCRIPTEN__
    return NULL;
#else
    return glMapBuffer(GL_PIXEL_PACK_BUFFER, accessMode);
#endif
  }
  void Scene::unMapPixelBuffer() {
    glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
  }

  void Scene::terminateFrameCapture() {
    glDeleteBuffers(mPixelBufferCount, mPixelBufferIds);
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
    mPixelBufferCount = 0;
    mPixelBufferIds = NULL;
  }

  void Scene::addLight(LightNode *light) {
    switch (light->type()) {
      case LightNode::TYPE_DIRECTIONAL:
        if (light->on())
          mDirectionalLightsActive.push_back(reinterpret_cast<DirectionalLight *>(light));
        else
          mDirectionalLightsInactive.push_back(reinterpret_cast<DirectionalLight *>(light));
        break;
      case LightNode::TYPE_POINT:
        if (light->on())
          mPointLightsActive.push_back(reinterpret_cast<PointLight *>(light));
        else
          mPointLightsInactive.push_back(reinterpret_cast<PointLight *>(light));
        break;
      case LightNode::TYPE_SPOT:
        if (light->on())
          mSpotLightsActive.push_back(reinterpret_cast<SpotLight *>(light));
        else
          mSpotLightsInactive.push_back(reinterpret_cast<SpotLight *>(light));
        break;
      default:
        assert(false);
    }
  }

  void Scene::removeLight(LightNode *light) {
    switch (light->type()) {
      case LightNode::TYPE_DIRECTIONAL:
        if (light->on())
          containerutils::removeElementFromVector(mDirectionalLightsActive, reinterpret_cast<DirectionalLight *>(light));
        else
          containerutils::removeElementFromVector(mDirectionalLightsInactive, reinterpret_cast<DirectionalLight *>(light));
        break;
      case LightNode::TYPE_POINT:
        if (light->on())
          containerutils::removeElementFromVector(mPointLightsActive, reinterpret_cast<PointLight *>(light));
        else
          containerutils::removeElementFromVector(mPointLightsInactive, reinterpret_cast<PointLight *>(light));
        break;
      case LightNode::TYPE_SPOT:
        if (light->on())
          containerutils::removeElementFromVector(mSpotLightsActive, reinterpret_cast<SpotLight *>(light));
        else
          containerutils::removeElementFromVector(mSpotLightsInactive, reinterpret_cast<SpotLight *>(light));
        break;
      default:
        assert(false);
    }
  }

  void Scene::setFog(WrSceneFogType fogType, WrSceneFogDepthType depthType, const glm::vec4 &color, float density, float start,
                     float end) {
    mIsFogDirty = true;
    mFog.mMode = glm::vec2(fogType, depthType);
    mFog.mColor = colorutils::srgbToLinear(color);
    // To speed up computation of a floating point exponent, we use the fact that e^(x) = 2^(x/log_e(2))
    // The operation is faster under the assumption that exp2() is faster than exp()
    mFog.mParams = glm::vec4(density * INVERSE_LOG2, density * density * INVERSE_LOG2, end, 1.0f / glm::abs(end - start));
  }

  void Scene::setSkybox(Renderable *renderable) {
    mSkybox = renderable;
    if (mSkybox) {
      mSkybox->defaultMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_DEFAULT);
      mSkybox->setEffectiveMaterial(mSkybox->defaultMaterial());
    }
  }

  void Scene::setHdrClearQuad(Renderable *renderable) {
    mHdrClearQuad = renderable;
    if (mHdrClearQuad) {
      mHdrClearQuad->defaultMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_DEFAULT);
      mHdrClearQuad->setEffectiveMaterial(mHdrClearQuad->defaultMaterial());
    }
  }

  int Scene::computeNodeCount() const {
    return 1 + mRoot->computeChildCount();
  }
  void Scene::printSceneTree() {
    debug::printSceneTree();
  }

  void Scene::render(bool culling) {
    assert(glstate::isInitialized());

    ++mFrameCounter;
    DEBUG("\nScene::render: total nodes=" << Scene::computeNodeCount() << ", frame=" << mFrameCounter);

    // debug::printCacheContents();
    // debug::printSceneTree();

    renderToViewports({mMainViewport}, culling);
  }

  void Scene::renderToViewports(std::vector<Viewport *> viewports, bool culling) {
    assert(glstate::isInitialized());

    DEBUG("Notify frame listeners...");

    for (auto listener : mListeners)
      listener();

    DEBUG("\nScene::renderToViewports: viewports.size()=" << viewports.size());

    prepareRender();

    for (Viewport *viewport : viewports) {
      mCurrentViewport = viewport;

      glstate::setDefaultState();
      mCurrentViewport->updateUniforms();
      mCurrentViewport->bind();
      mCurrentViewport->clear();

      // Simplified rendering in case use material is set (for example when picking)
      if (Renderable::useMaterial()) {
        DEBUG("Rendering using material \"" << Renderable::useMaterial() << "\"");
        for (int i = 0; i < WR_RENDERABLE_DRAWING_ORDER_COUNT; ++i) {
          if (!mRenderQueues[i].size())
            continue;

          RenderQueueIterator firstInvisibleRenderable =
            partitionByVisibility(mRenderQueues[i].begin(), mRenderQueues[i].end());
          RenderQueueIterator firstCulledRenderable =
            partitionByViewability(mRenderQueues[i].begin(), firstInvisibleRenderable);

          // Only render Renderables that have the optional material currently in use
          RenderQueueIterator firstWithoutUseMaterial = partitionByUseMaterial(mRenderQueues[i].begin(), firstCulledRenderable);
          if (firstWithoutUseMaterial == mRenderQueues[i].begin())
            continue;

          if (mClearDepth && i > 0)
            glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

          sortRenderQueueByState(mRenderQueues[i].begin(), firstWithoutUseMaterial);
          renderDefault(mRenderQueues[i].begin(), firstWithoutUseMaterial, i > 0);
          mCurrentViewport->applyPostProcessing();
        }
      } else {
        renderToViewport(culling);
        if (mCurrentViewport == mMainViewport && mCurrentViewport->frameBuffer()) {
          glstate::bindDrawFrameBuffer(0);
          mCurrentViewport->frameBuffer()->blit(0, true, false, false, 0, 0, 0, 0, 0, 0,
                                                mCurrentViewport->width() * mCurrentViewport->pixelRatio(),
                                                mCurrentViewport->height() * mCurrentViewport->pixelRatio());
        }
      }

      mCurrentViewport->finishRender();
    }

    glstate::checkError();
  }

  void Scene::enqueueRenderable(Renderable *renderable) {
    mRenderQueues[renderable->drawingOrder()].push_back(renderable);

    if (!renderable->isTranslucent() && renderable->castShadows() && renderable->shadowVolumeCaster() &&
        renderable->drawingOrder() == WR_RENDERABLE_DRAWING_ORDER_MAIN &&
        renderable->drawingMode() == WR_RENDERABLE_DRAWING_MODE_TRIANGLES)
      mShadowVolumeQueue.push_back(renderable->shadowVolumeCaster());
  }

  void Scene::removeFrameListener(void (*listener)()) {
    mListeners.erase(std::remove(mListeners.begin(), mListeners.end(), listener), mListeners.end());
  }

  Scene::Scene() :
    mFrameCounter(0),
    mRoot(NULL),
    mMainViewport(NULL),
    mCurrentViewport(NULL),
    mRenderQueues(WR_RENDERABLE_DRAWING_ORDER_COUNT),
    mSkybox(NULL),
    mHdrClearQuad(NULL),
    mFogProgram(NULL),
    mShadowVolumeProgram(NULL),
    mRenderSkybox(true),
    mHdrClear(true),
    mTranslucence(true),
    mClearDepth(true),
    mPixelBufferCount(0),
    mPixelBufferIds(NULL) {
    mRoot = Transform::createTransform();
    mMainViewport = Viewport::createViewport();
    mMainViewport->setCamera(Camera::createCamera());
    setFog(WR_SCENE_FOG_TYPE_NONE);
  }

  Scene::~Scene() {
    // Cleanup static meshes used for AABBs & bounding spheres draw
    config::cleanup();

    reset();

    if (mMainViewport) {
      Node::deleteNode(mMainViewport->camera());
      Viewport::deleteViewport(mMainViewport);
    }

    if (mRoot)
      Node::deleteNode(mRoot);
  }

  void Scene::prepareRender() {
    // Perform accumulated OpenGL state changes
    GlUser::applyGl();

    // Update the scene tree and enqueue Renderables
    for (RenderQueue &renderQueue : mRenderQueues)
      renderQueue.clear();

    mShadowVolumeQueue.clear();

    mRoot->updateFromParent();

    // cppcheck-suppress reademptycontainer
    DEBUG("Number of shadow-casting Renderables: " << mShadowVolumeQueue.size());

    // Update fog uniform buffer
    updateFogUniformBuffer();
  }

  void Scene::renderToViewport(bool culling) {
    DEBUG("Scene::renderToViewport, viewport = " << mCurrentViewport);

    LightNode::updateUniforms();

    // hdr-clear first, irrespective of winding order
    if (mHdrClear && mHdrClearQuad && mCurrentViewport->isSkyboxEnabled()) {
      DEBUG("performing HDR clear!");

      glstate::setBlend(false);
      glstate::setDepthClamp(false);
      glstate::setDepthMask(false);
      glstate::setDepthTest(false);
      glstate::setStencilTest(false);
      glstate::setColorMask(true, true, true, true);
      glstate::setFrontFace(GL_CCW);

      mHdrClearQuad->render();

      if (mCurrentViewport->camera()->flipY())
        glstate::setFrontFace(GL_CW);
    }

    // Render skybox first
    if (mSkybox && mRenderSkybox && mCurrentViewport->isSkyboxEnabled()) {
      DEBUG("Rendering skybox");

      glstate::setBlend(false);

// GL_DEPTH_CLAMP is not available in webgl, so it is a way to work around
// It must be here and not in glstate::setDepthClamp because we need to access the camera
#ifdef __EMSCRIPTEN__
      float near = mCurrentViewport->camera()->nearDistance();
      mCurrentViewport->camera()->setNear(0.05);
      float far = mCurrentViewport->camera()->farDistance();
      mCurrentViewport->camera()->setFar(1000000.0f);
      mCurrentViewport->camera()->updateUniforms();
#endif
      glstate::setDepthClamp(true);
      glstate::setDepthMask(false);
      glstate::setDepthTest(true);
      glstate::setDepthFunc(GL_LESS);
      glstate::setStencilTest(false);
      glstate::setColorMask(true, true, true, true);

      mSkybox->render();

#ifdef __EMSCRIPTEN__
      mCurrentViewport->camera()->setNear(near);
      mCurrentViewport->camera()->setFar(far);
      mCurrentViewport->camera()->updateUniforms();
#endif
    }

    RenderQueue *renderQueue = &mRenderQueues[WR_RENDERABLE_DRAWING_ORDER_MAIN];
    DEBUG("Rendering queue 0, number of Renderables: " << renderQueue->size());

    RenderQueueIterator firstInvisibleRenderable = partitionByVisibility(renderQueue->begin(), renderQueue->end());
    DEBUG("Number of visible Renderables: " << firstInvisibleRenderable - renderQueue->begin());

    RenderQueueIterator firstCulledRenderable =
      culling ? partitionByViewability(renderQueue->begin(), firstInvisibleRenderable) : renderQueue->end();
    DEBUG("Number of non-culled Renderables: " << firstCulledRenderable - renderQueue->begin());

    RenderQueueIterator firstOpaqueRenderable = renderQueue->begin();
    if (mTranslucence)
      firstOpaqueRenderable = partitionByTranslucency(renderQueue->begin(), firstCulledRenderable);

    DEBUG("Number of opaque Renderables: " << firstCulledRenderable - firstOpaqueRenderable);
    DEBUG("Number of translucent & z-sorted Renderables: " << firstOpaqueRenderable - renderQueue->begin());

    sortRenderQueueByState(firstOpaqueRenderable, firstCulledRenderable);
    sortRenderQueueByDistance(renderQueue->begin(), firstOpaqueRenderable);

    DEBUG("Rendering opaque renderables");
    if (config::areShadowsEnabled() && mCurrentViewport->areShadowsEnabled() && LightNode::activeLightsCastingShadows() > 0) {
      DEBUG("Rendering ambient and emissive illumination");

      RenderQueueIterator firstWithoutStencilProgram = partitionByStencilProgram(firstOpaqueRenderable, firstCulledRenderable);
      RenderQueueIterator firstShadowReceiver = partitionByShadowReceiving(firstOpaqueRenderable, firstWithoutStencilProgram);

      renderStencilAmbientEmissive(firstOpaqueRenderable, firstWithoutStencilProgram);

      mCurrentViewport->applyAmbientOcclusion();

      for (size_t i = 0; i < mDirectionalLightsActive.size(); ++i) {
        mLightRenderable.mActiveLights = glm::ivec4(i, -1, -1, -1);
        glstate::uniformBuffer(WR_GLSL_LAYOUT_UNIFORM_BUFFER_LIGHT_RENDERABLE)->writeValue(&mLightRenderable);

        renderStencilPerLight(mDirectionalLightsActive[i], firstOpaqueRenderable, firstShadowReceiver,
                              firstWithoutStencilProgram);
      }

      for (size_t i = 0; i < mPointLightsActive.size(); ++i) {
        mLightRenderable.mActiveLights = glm::ivec4(-1, i, -1, -1);
        glstate::uniformBuffer(WR_GLSL_LAYOUT_UNIFORM_BUFFER_LIGHT_RENDERABLE)->writeValue(&mLightRenderable);

        renderStencilPerLight(mPointLightsActive[i], firstOpaqueRenderable, firstShadowReceiver, firstWithoutStencilProgram);
      }

      for (size_t i = 0; i < mSpotLightsActive.size(); ++i) {
        mLightRenderable.mActiveLights = glm::ivec4(-1, -1, i, -1);
        glstate::uniformBuffer(WR_GLSL_LAYOUT_UNIFORM_BUFFER_LIGHT_RENDERABLE)->writeValue(&mLightRenderable);

        renderStencilPerLight(mSpotLightsActive[i], firstOpaqueRenderable, firstShadowReceiver, firstWithoutStencilProgram);
      }

      if (mFog.mMode.x > 0.0f) {
        DEBUG("Rendering fog");
        renderStencilFog(firstOpaqueRenderable, firstWithoutStencilProgram);
      }

      // Render renderables which don't have stencil shadow shaders
      renderStencilWithoutProgram(firstWithoutStencilProgram, firstCulledRenderable);
    } else {
      renderDefault(firstOpaqueRenderable, firstCulledRenderable);
      mCurrentViewport->applyAmbientOcclusion();
    }

    if (firstOpaqueRenderable - renderQueue->begin()) {
      DEBUG("Rendering translucent renderables");
      renderTranslucent(renderQueue->begin(), firstOpaqueRenderable);
    }

    // Draw bounding volumes if enabled
    if (config::showBoundingSpheres()) {
      DEBUG("Drawing bounding spheres");
      for (auto it = renderQueue->begin(); it < renderQueue->end(); ++it)
        config::drawBoundingSphere((*it)->boundingSphere());
    }

    if (config::showAabbs()) {
      DEBUG("Drawing AABBs");
      for (auto it = renderQueue->begin(); it < renderQueue->end(); ++it)
        config::drawAabb((*it)->aabb());
    }

    // we want multiple effects to overwrite the viewport's post-processing effect framebuffer so we can't use GL_LESS or from
    // the second effect onwards the effects won't get written to the viewport's framebuffer
    glstate::setDepthFunc(GL_LEQUAL);

    // Render post-processing queue (preserving depth)
    mCurrentViewport->applyPostProcessing();

    // Draw Renderables not part of main queue
    for (int i = WR_RENDERABLE_DRAWING_ORDER_MAIN + 1; i < WR_RENDERABLE_DRAWING_ORDER_COUNT; ++i) {
      if (!mRenderQueues[i].size())
        continue;

      if (mClearDepth)
        glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

      renderQueue = &mRenderQueues[i];
      DEBUG("Rendering queue " << i << ", number of Renderables: " << renderQueue->size());

      firstInvisibleRenderable = partitionByVisibility(renderQueue->begin(), renderQueue->end());
      firstCulledRenderable =
        culling ? partitionByViewability(renderQueue->begin(), firstInvisibleRenderable) : renderQueue->end();
      firstOpaqueRenderable = renderQueue->begin();

      if (mTranslucence)
        firstOpaqueRenderable = partitionByTranslucency(renderQueue->begin(), firstCulledRenderable);

      sortRenderQueueByState(firstOpaqueRenderable, firstCulledRenderable);
      sortRenderQueueByDistance(renderQueue->begin(), firstOpaqueRenderable);

      if (firstCulledRenderable - firstOpaqueRenderable) {
        DEBUG("Rendering opaque renderables");
        renderDefault(firstOpaqueRenderable, firstCulledRenderable, true);
      }

      if (firstOpaqueRenderable - renderQueue->begin()) {
        DEBUG("Rendering translucent renderables");
        renderTranslucent(renderQueue->begin(), firstOpaqueRenderable, true);
      }
    }
    mCurrentViewport->applyAntiAliasing();
    mCurrentViewport->drawOverlays();
  }

  void Scene::updateFogUniformBuffer() {
    if (!mIsFogDirty)
      return;

    glstate::uniformBuffer(WR_GLSL_LAYOUT_UNIFORM_BUFFER_FOG)->writeValue(&mFog);

    mIsFogDirty = false;
  }

  Scene::RenderQueueIterator Scene::partitionByVisibility(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(
      first, last, [this](const Renderable *r) -> bool { return mCurrentViewport->visibilityMask() & r->visibilityFlags(); });
  }

  Scene::RenderQueueIterator Scene::partitionByViewability(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(first, last, [this](Renderable *r) -> bool {
      return !r->sceneCulling() || mCurrentViewport->camera()->isAabbVisible(r->aabb());
    });
  }

  Scene::RenderQueueIterator Scene::partitionByTranslucency(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(first, last, [](const Renderable *r) -> bool { return r->isTranslucent(); });
  }

  Scene::RenderQueueIterator Scene::partitionByUseMaterial(RenderQueueIterator first, RenderQueueIterator last) {
    std::string useMaterial(Renderable::useMaterial());

    return std::partition(first, last,
                          [&useMaterial](const Renderable *r) -> bool { return r->optionalMaterial(useMaterial); });
  }

  Scene::RenderQueueIterator Scene::partitionByStencilProgram(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(first, last,
                          [](const Renderable *r) -> bool { return r->effectiveMaterial()->stencilAmbientEmissiveProgram(); });
  }

  Scene::RenderQueueIterator Scene::partitionByShadowReceiving(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(first, last, [](const Renderable *r) -> bool { return !r->receiveShadows(); });
  }

  Scene::RenderQueueIterator Scene::partitionByZOrder(RenderQueueIterator first, RenderQueueIterator last) {
    return std::partition(first, last, [](const Renderable *r) -> bool { return r->zSortedRendering(); });
  }

  Scene::ShadowVolumeIterator Scene::partitionShadowsByVisibility(ShadowVolumeIterator first, ShadowVolumeIterator last,
                                                                  LightNode *light) {
    return std::partition(first, last, [this, &light](ShadowVolumeCaster *shadowVolume) -> bool {
      return mCurrentViewport->camera()->isAabbVisible(shadowVolume->aabb(light));
    });
  }

  void Scene::sortRenderQueueByState(RenderQueueIterator first, RenderQueueIterator last) {
    std::sort(first, last, [](const Renderable *a, const Renderable *b) -> bool { return a->sortingId() > b->sortingId(); });
  }

  void Scene::sortRenderQueueByDistance(RenderQueueIterator first, RenderQueueIterator last) {
    for (auto it = first; it < last; ++it)
      (*it)->recomputeBoundingSphereInViewSpace(mCurrentViewport->camera()->view());

    std::sort(first, last, [](const Renderable *a, const Renderable *b) -> bool {
      const float aDistance =
        a->isInViewSpace() ? fabs(a->parent()->position()[2]) : glm::length2(a->boundingSphereInViewSpace().mCenter);
      const float bDistance =
        b->isInViewSpace() ? fabs(b->parent()->position()[2]) : glm::length2(b->boundingSphereInViewSpace().mCenter);
      return aDistance > bDistance;
    });
  }

  void Scene::renderDefault(RenderQueueIterator first, RenderQueueIterator last, bool disableDepthTest) {
    glstate::setBlend(false);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(true);
    glstate::setDepthTest(!disableDepthTest);
    glstate::setDepthFunc(GL_LESS);
    glstate::setStencilTest(false);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    for (auto it = first; it < last; ++it) {
      assert((*it)->defaultMaterial());

      (*it)->effectiveMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_DEFAULT);
      (*it)->render();
    }
  }

  static bool affectedByLight(Renderable *renderable, LightNode *light) {
    bool visible = true;
    // Light culling
    if (light->type() != LightNode::TYPE_DIRECTIONAL) {
      PositionalLight *positionalLight = static_cast<PositionalLight *>(light);
      const primitive::Sphere &boundingSphere = renderable->boundingSphere();
      const float distance = glm::distance(boundingSphere.mCenter, positionalLight->position());
      const float radius = positionalLight->radius() + boundingSphere.mRadius;
      // Check if light is too far away
      visible = (distance <= radius &&
                 (distance < boundingSphere.mRadius ||  // Light is inside the boundingSphere, necessary because pow(distance -
                                                        // boundingSphere.mRadius, 2) can be very big in this case.
                  positionalLight->attenuationConstant() +
                      (distance - boundingSphere.mRadius) *
                        (positionalLight->attenuationLinear() +
                         (distance - boundingSphere.mRadius) * positionalLight->attenuationQuadratic()) <
                    2000.0f));
      // In the shaders, the attenuation is used as such:
      // attenuationFactor = 1/(attenuation[0] + distanceToLight * (attenuation[1] + distanceToLight * attenuation[2])
      // color = 1/attenuationFactor * color * ...
      // Due to this there is no well-defined upper bound for the attenuationFactor.
      // 2000 is a trade-off value in which the remaining light is very weak but still visible. The light become really
      // invisible around 8000.
    }
    return visible;
  }

  void Scene::renderStencilPerLight(LightNode *light, RenderQueueIterator first, RenderQueueIterator firstShadowReceiver,
                                    RenderQueueIterator last) {
    if (light->castShadows()) {
      assert(mShadowVolumeProgram);
      mShadowVolumeProgram->bind();

      Camera *camera = mCurrentViewport->camera();
      const primitive::Plane &farPlane = camera->frustum().plane(Frustum::FRUSTUM_PLANE_FAR);

      const primitive::Aabb &cameraAabb = camera->aabb();
      glm::vec3 cameraToLightInv;
      if (light->type() != LightNode::TYPE_DIRECTIONAL) {
        PositionalLight *positionalLight = static_cast<PositionalLight *>(light);
        cameraToLightInv = 1.0f / glm::normalize(positionalLight->position() - camera->position());
      } else {
        DirectionalLight *directionalLight = static_cast<DirectionalLight *>(light);
        cameraToLightInv = 1.0f / -directionalLight->direction();
      }

      ShadowVolumeIterator firstInvisibleShadowVolume =
        partitionShadowsByVisibility(mShadowVolumeQueue.begin(), mShadowVolumeQueue.end(), light);
      for (ShadowVolumeIterator it = mShadowVolumeQueue.begin(); it < firstInvisibleShadowVolume; ++it) {
        const primitive::Aabb renderableAabb = (*it)->renderable()->aabb();

        // Check if the renderable is affected by current light
        if (!affectedByLight((*it)->renderable(), light) || !primitive::isAabbAbovePlane(farPlane, renderableAabb))
          continue;

        // Use depth fail if camera stands in the shadow volume
        if (primitive::aabbCollision(cameraAabb, (*it)->aabb(light)) ||
            primitive::rayIntersectAabb(camera->position(), cameraToLightInv, renderableAabb, false))
          renderStencilShadowVolumesDepthFail(*it, light);
        else
          renderStencilShadowVolumesDepthPass(*it, light);

        if (config::showShadowAabbs()) {
          config::drawAabb((*it)->aabb(light));
          mShadowVolumeProgram->bind();
        }
      }

      if (first != firstShadowReceiver)
        renderStencilDiffuseSpecular(first, firstShadowReceiver, light, false);
      renderStencilDiffuseSpecular(firstShadowReceiver, last, light);

      glClear(GL_STENCIL_BUFFER_BIT);
    } else
      renderStencilDiffuseSpecular(first, last, light, false);
  }

  void Scene::renderStencilShadowVolumesDepthPass(ShadowVolumeCaster *shadowVolume, LightNode *light) {
    glstate::setDepthClamp(true);
    glstate::setDepthMask(false);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_LESS);
    glstate::setStencilTest(true);
    glstate::setStencilFunc(GL_ALWAYS, 0, ~0);
    glstate::setCullFace(false);
    glstate::setColorMask(false, false, false, false);

    // Special case for cw triangles
    if (shadowVolume->renderable()->invertFrontFace()) {
      glstate::setStencilOpFront(GL_KEEP, GL_KEEP, GL_DECR_WRAP);
      glstate::setStencilOpBack(GL_KEEP, GL_KEEP, GL_INCR_WRAP);
    } else {
      glstate::setStencilOpFront(GL_KEEP, GL_KEEP, GL_INCR_WRAP);
      glstate::setStencilOpBack(GL_KEEP, GL_KEEP, GL_DECR_WRAP);
    }

    // Compute silhouette without caps
    shadowVolume->computeSilhouette(light, false);

    glUniformMatrix4fv(mShadowVolumeProgram->uniformLocation(WR_GLSL_LAYOUT_UNIFORM_MODEL_TRANSFORM), 1, false,
                       glm::value_ptr(shadowVolume->renderable()->parent()->matrix()));
    shadowVolume->renderSides(light);
  }

  void Scene::renderStencilShadowVolumesDepthFail(ShadowVolumeCaster *shadowVolume, LightNode *light) {
    glstate::setDepthClamp(true);
    glstate::setDepthMask(false);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_GEQUAL);
    glstate::setStencilTest(true);
    glstate::setStencilFunc(GL_ALWAYS, 0, ~0);
    glstate::setCullFace(false);
    glstate::setColorMask(false, false, false, false);

    // Special case for cw triangles
    if (shadowVolume->renderable()->invertFrontFace()) {
      glstate::setStencilOpFront(GL_KEEP, GL_KEEP, GL_INCR_WRAP);
      glstate::setStencilOpBack(GL_KEEP, GL_KEEP, GL_DECR_WRAP);
    } else {
      glstate::setStencilOpFront(GL_KEEP, GL_KEEP, GL_DECR_WRAP);
      glstate::setStencilOpBack(GL_KEEP, GL_KEEP, GL_INCR_WRAP);
    }

    // Compute silhouette with caps
    shadowVolume->computeSilhouette(light, true);

    glUniformMatrix4fv(mShadowVolumeProgram->uniformLocation(WR_GLSL_LAYOUT_UNIFORM_MODEL_TRANSFORM), 1, false,
                       glm::value_ptr(shadowVolume->renderable()->parent()->matrix()));
    shadowVolume->renderSides(light);

    shadowVolume->renderCaps(light);
  }

  void Scene::renderStencilAmbientEmissive(RenderQueueIterator first, RenderQueueIterator last) {
    glstate::setBlend(false);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(true);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_LESS);
    glstate::setStencilTest(false);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    for (auto it = first; it < last; ++it) {
      assert((*it)->effectiveMaterial()->stencilAmbientEmissiveProgram());

      (*it)->effectiveMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_STENCIL_AMBIENT_EMISSIVE);
      (*it)->render();
    }
  }

  void Scene::renderStencilDiffuseSpecular(RenderQueueIterator first, RenderQueueIterator last, LightNode *light,
                                           bool applyShadows) {
    glstate::setBlend(true);
    glstate::setBlendEquation(GL_FUNC_ADD);
    glstate::setBlendFunc(GL_ONE, GL_ONE);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(false);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_LEQUAL);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    if (applyShadows) {
      glstate::setStencilTest(true);
      glstate::setStencilFunc(GL_EQUAL, 0, ~0);
      glstate::setStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
    } else
      glstate::setStencilTest(false);

    for (auto it = first; it < last; ++it) {
      if (!affectedByLight(*it, light))
        continue;

      assert((*it)->effectiveMaterial()->stencilDiffuseSpecularProgram());

      (*it)->effectiveMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_STENCIL_DIFFUSE_SPECULAR);
      (*it)->render();
    }
  }

  void Scene::renderStencilFog(RenderQueueIterator first, RenderQueueIterator last) {
    glstate::setBlend(true);
    glstate::setBlendEquation(GL_FUNC_ADD);
    glstate::setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(false);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_LEQUAL);
    glstate::setStencilTest(false);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    for (auto it = first; it < last; ++it)
      (*it)->renderWithoutMaterial(mFogProgram);
  }

  void Scene::renderStencilWithoutProgram(RenderQueueIterator first, RenderQueueIterator last) {
    glstate::setBlend(true);
    glstate::setBlendEquation(GL_FUNC_ADD);
    glstate::setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(true);
    glstate::setDepthTest(true);
    glstate::setDepthFunc(GL_LESS);
    glstate::setStencilTest(false);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    for (auto it = first; it < last; ++it) {
      assert((*it)->effectiveMaterial());

      (*it)->effectiveMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_DEFAULT);
      (*it)->render();
    }
  }

  void Scene::renderTranslucent(RenderQueueIterator first, RenderQueueIterator last, bool disableDepthTest) {
    glstate::setBlend(true);
    glstate::setBlendEquation(GL_FUNC_ADD);
    glstate::setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glstate::setDepthClamp(false);
    glstate::setDepthMask(false);
    glstate::setDepthTest(!disableDepthTest);
    glstate::setDepthFunc(GL_LESS);
    glstate::setStencilTest(false);
    glstate::setCullFace(true);
    glstate::setColorMask(true, true, true, true);

    for (auto it = first; it < last; ++it) {
      if (!(*it)->effectiveMaterial())
        continue;

      (*it)->effectiveMaterial()->setEffectiveProgram(Material::MATERIAL_PROGRAM_DEFAULT);
      (*it)->render();
    }
  }

}  // namespace wren

// C interface implementation
WrScene *wr_scene_get_instance() {
  return reinterpret_cast<WrScene *>(wren::Scene::instance());
}

void wr_scene_destroy() {
  wren::Scene::destroy();
}

void wr_scene_init(WrScene *scene) {
  reinterpret_cast<wren::Scene *>(scene)->init();
}

void wr_scene_apply_pending_updates(WrScene *scene) {
  reinterpret_cast<wren::Scene *>(scene)->applyPendingUpdates();
}

void wr_scene_get_main_buffer(WrScene *scene, int width, int height, unsigned int format, unsigned int data_type,
                              unsigned int buffer_type, void *buffer) {
  reinterpret_cast<wren::Scene *>(scene)->getMainBuffer(width, height, format, data_type, buffer_type, buffer);
}

void wr_scene_init_frame_capture(WrScene *scene, int pixel_buffer_count, unsigned int *pixel_buffer_ids, int frame_size) {
  reinterpret_cast<wren::Scene *>(scene)->initFrameCapture(pixel_buffer_count, pixel_buffer_ids, frame_size);
}

void wr_scene_bind_pixel_buffer(WrScene *scene, int buffer) {
  reinterpret_cast<wren::Scene *>(scene)->bindPixelBuffer(buffer);
}

void *wr_scene_map_pixel_buffer(WrScene *scene, unsigned int access_mode) {
  return reinterpret_cast<wren::Scene *>(scene)->mapPixelBuffer(access_mode);
}

void wr_scene_unmap_pixel_buffer(WrScene *scene) {
  reinterpret_cast<wren::Scene *>(scene)->unMapPixelBuffer();
}

void wr_scene_terminate_frame_capture(WrScene *scene) {
  reinterpret_cast<wren::Scene *>(scene)->terminateFrameCapture();
}

void wr_scene_render(WrScene *scene, const char *material_name, bool culling) {
  if (material_name)
    wren::Renderable::setUseMaterial(material_name);

  reinterpret_cast<wren::Scene *>(scene)->render(culling);

  wren::Renderable::setUseMaterial(NULL);
}

void wr_scene_render_to_viewports(WrScene *scene, int count, WrViewport **viewports, const char *material_name, bool culling) {
  if (material_name)
    wren::Renderable::setUseMaterial(material_name);

  wren::Viewport **start = reinterpret_cast<wren::Viewport **>(viewports);
  std::vector<wren::Viewport *> viewportsVector(start, start + count);
  reinterpret_cast<wren::Scene *>(scene)->renderToViewports(viewportsVector, culling);

  wren::Renderable::setUseMaterial(NULL);
}

void wr_scene_reset(WrScene *scene) {
  reinterpret_cast<wren::Scene *>(scene)->reset();
}

void wr_scene_set_ambient_light(const float *ambient_light) {
  wren::LightNode::setAmbientLight(glm::make_vec3(ambient_light));
}

int wr_scene_get_active_spot_light_count(WrScene *scene) {
  return reinterpret_cast<wren::Scene *>(scene)->spotLights().size();
}

int wr_scene_get_active_point_light_count(WrScene *scene) {
  return reinterpret_cast<wren::Scene *>(scene)->pointLights().size();
}

int wr_scene_get_active_directional_light_count(WrScene *scene) {
  return reinterpret_cast<wren::Scene *>(scene)->directionalLights().size();
}

void wr_scene_set_fog(WrScene *scene, WrSceneFogType fogType, WrSceneFogDepthType depthType, const float *color, float density,
                      float start, float end) {
  reinterpret_cast<wren::Scene *>(scene)->setFog(
    fogType, depthType, color != NULL ? glm::vec4(color[0], color[1], color[2], 1.0f) : wren::gVec4Ones, density, start, end);
}

void wr_scene_set_skybox(WrScene *scene, WrRenderable *renderable) {
  reinterpret_cast<wren::Scene *>(scene)->setSkybox(reinterpret_cast<wren::Renderable *>(renderable));
}

void wr_scene_set_hdr_clear_quad(WrScene *scene, WrRenderable *renderable) {
  reinterpret_cast<wren::Scene *>(scene)->setHdrClearQuad(reinterpret_cast<wren::Renderable *>(renderable));
}

void wr_scene_set_fog_program(WrScene *scene, WrShaderProgram *program) {
  reinterpret_cast<wren::Scene *>(scene)->setFogProgram(reinterpret_cast<wren::ShaderProgram *>(program));
}

void wr_scene_set_shadow_volume_program(WrScene *scene, WrShaderProgram *program) {
  reinterpret_cast<wren::Scene *>(scene)->setShadowVolumeProgram(reinterpret_cast<wren::ShaderProgram *>(program));
}

void wr_scene_enable_depth_reset(WrScene *scene, bool enable) {
  reinterpret_cast<wren::Scene *>(scene)->enableDepthReset(enable);
}

void wr_scene_enable_skybox(WrScene *scene, bool enable) {
  reinterpret_cast<wren::Scene *>(scene)->enableSkybox(enable);
}

void wr_scene_enable_hdr_clear(WrScene *scene, bool enable) {
  reinterpret_cast<wren::Scene *>(scene)->enableHdrClear(enable);
}

void wr_scene_enable_translucence(WrScene *scene, bool enable) {
  reinterpret_cast<wren::Scene *>(scene)->enableTranslucence(enable);
}

int wr_scene_compute_node_count(WrScene *scene) {
  return reinterpret_cast<wren::Scene *>(scene)->computeNodeCount();
}

WrTransform *wr_scene_get_root(WrScene *scene) {
  return reinterpret_cast<WrTransform *>(reinterpret_cast<wren::Scene *>(scene)->root());
}

WrViewport *wr_scene_get_viewport(WrScene *scene) {
  return reinterpret_cast<WrViewport *>(reinterpret_cast<wren::Scene *>(scene)->mainViewport());
}

void wr_scene_add_frame_listener(WrScene *scene, void (*listener)()) {
  reinterpret_cast<wren::Scene *>(scene)->addFrameListener(listener);
}

void wr_scene_remove_frame_listener(WrScene *scene, void (*listener)()) {
  reinterpret_cast<wren::Scene *>(scene)->removeFrameListener(listener);
}