pub struct HalfEdge { /* private fields */ }Expand description
A half-edge
Implementations§
source§impl HalfEdge
impl HalfEdge
sourcepub fn new(
vertices: [Handle<Vertex>; 2],
global_form: Handle<GlobalEdge>
) -> Self
pub fn new(
vertices: [Handle<Vertex>; 2],
global_form: Handle<GlobalEdge>
) -> Self
Create an instance of HalfEdge
Examples found in repository?
More examples
src/algorithms/transform/edge.rs (line 25)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let vertices = self.vertices().clone().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(vertices, global_form)
}src/algorithms/sweep/vertex.rs (line 119)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}src/algorithms/sweep/edge.rs (line 88)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}sourcepub fn curve(&self) -> &Handle<Curve>
pub fn curve(&self) -> &Handle<Curve>
Access the curve that defines the half-edge’s geometry
Examples found in repository?
src/objects/full/edge.rs (line 52)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
pub fn surface(&self) -> &Handle<Surface> {
self.curve().surface()
}
/// Access the global form of the half-edge
pub fn global_form(&self) -> &Handle<GlobalEdge> {
&self.global_form
}
}
impl fmt::Display for HalfEdge {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let [a, b] = self.vertices().clone().map(|vertex| vertex.position());
write!(f, "edge from {a:?} to {b:?}")?;
write!(f, " on {:?}", self.curve().global_form())?;
Ok(())
}More examples
src/algorithms/intersect/ray_edge.rs (line 20)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
fn intersect(self) -> Option<Self::Intersection> {
let (ray, edge) = self;
let line = match edge.curve().path() {
SurfacePath::Line(line) => line,
SurfacePath::Circle(_) => {
todo!("Casting rays against circles is not supported yet")
}
};
let points = edge.vertices().clone().map(|vertex| {
let point = vertex.position();
line.point_from_line_coords(point)
});
let segment = Segment::from_points(points);
(ray, &segment).intersect()
}src/validate/edge.rs (line 130)
129 130 131 132 133 134 135 136 137 138 139 140 141 142
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}src/algorithms/approx/edge.rs (line 34)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}src/algorithms/intersect/curve_edge.rs (line 41)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
pub fn compute(curve: &Curve, half_edge: &HalfEdge) -> Option<Self> {
let curve_as_line = match curve.path() {
SurfacePath::Line(line) => line,
_ => todo!("Curve-edge intersection only supports lines"),
};
let edge_as_segment = {
let edge_curve_as_line = match half_edge.curve().path() {
SurfacePath::Line(line) => line,
_ => {
todo!("Curve-edge intersection only supports line segments")
}
};
let edge_vertices = half_edge.vertices().clone().map(|vertex| {
edge_curve_as_line.point_from_line_coords(vertex.position())
});
Segment::from_points(edge_vertices)
};
let intersection =
LineSegmentIntersection::compute(&curve_as_line, &edge_as_segment)?;
let intersection = match intersection {
LineSegmentIntersection::Point { point_on_line } => Self::Point {
point_on_curve: point_on_line,
},
LineSegmentIntersection::Coincident { points_on_line } => {
Self::Coincident {
points_on_curve: points_on_line,
}
}
};
Some(intersection)
}Additional examples can be found in:
sourcepub fn vertices(&self) -> &[Handle<Vertex>; 2]
pub fn vertices(&self) -> &[Handle<Vertex>; 2]
Access the vertices that bound the half-edge on the curve
Examples found in repository?
src/objects/full/edge.rs (line 29)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
pub fn curve(&self) -> &Handle<Curve> {
let [vertex, _] = self.vertices();
vertex.curve()
}
/// Access the vertices that bound the half-edge on the curve
pub fn vertices(&self) -> &[Handle<Vertex>; 2] {
&self.vertices
}
/// Access the vertex at the back of the half-edge
pub fn back(&self) -> &Handle<Vertex> {
let [back, _] = self.vertices();
back
}
/// Access the vertex at the front of the half-edge
pub fn front(&self) -> &Handle<Vertex> {
let [_, front] = self.vertices();
front
}
/// Access the surface that the half-edge's curve is defined in
pub fn surface(&self) -> &Handle<Surface> {
self.curve().surface()
}
/// Access the global form of the half-edge
pub fn global_form(&self) -> &Handle<GlobalEdge> {
&self.global_form
}
}
impl fmt::Display for HalfEdge {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let [a, b] = self.vertices().clone().map(|vertex| vertex.position());
write!(f, "edge from {a:?} to {b:?}")?;
write!(f, " on {:?}", self.curve().global_form())?;
Ok(())
}More examples
src/partial/objects/edge.rs (line 64)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
fn from_full(
half_edge: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
vertices: half_edge
.vertices()
.clone()
.map(|vertex| Partial::from_full(vertex, cache)),
global_form: Partial::from_full(
half_edge.global_form().clone(),
cache,
),
}
}src/algorithms/transform/edge.rs (line 17)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let vertices = self.vertices().clone().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(vertices, global_form)
}src/validate/cycle.rs (line 48)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
fn check_half_edge_connections(cycle: &Cycle) -> Result<(), Self> {
for (a, b) in cycle.half_edges().circular_tuple_windows() {
let [_, prev] = a.vertices();
let [next, _] = b.vertices();
let prev = prev.surface_form();
let next = next.surface_form();
if prev.id() != next.id() {
return Err(Self::HalfEdgeConnection {
prev: prev.clone(),
next: next.clone(),
});
}
}
Ok(())
}sourcepub fn back(&self) -> &Handle<Vertex>
pub fn back(&self) -> &Handle<Vertex>
Access the vertex at the back of the half-edge
Examples found in repository?
src/validate/edge.rs (line 116)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
fn check_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let back_curve = half_edge.back().curve();
let front_curve = half_edge.front().curve();
if back_curve.id() != front_curve.id() {
return Err(Self::CurveMismatch {
back_curve: back_curve.clone(),
front_curve: front_curve.clone(),
});
}
Ok(())
}
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}
fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_vertices_from_vertices = {
let (global_vertices_from_vertices, _) =
VerticesInNormalizedOrder::new(
half_edge
.vertices()
.each_ref_ext()
.map(|vertex| vertex.global_form().clone()),
);
global_vertices_from_vertices.access_in_normalized_order()
};
let global_vertices_from_global_form = half_edge
.global_form()
.vertices()
.access_in_normalized_order();
let ids_from_vertices = global_vertices_from_vertices
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
let ids_from_global_form = global_vertices_from_global_form
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
if ids_from_vertices != ids_from_global_form {
return Err(Self::GlobalVertexMismatch {
global_vertices_from_vertices,
global_vertices_from_global_form,
});
}
Ok(())
}
fn check_vertex_positions(
half_edge: &HalfEdge,
config: &ValidationConfig,
) -> Result<(), Self> {
let back_position = half_edge.back().position();
let front_position = half_edge.front().position();
let distance = (back_position - front_position).magnitude();
if distance < config.distinct_min_distance {
return Err(Self::VerticesAreCoincident {
back_position,
front_position,
distance,
});
}
Ok(())
}sourcepub fn front(&self) -> &Handle<Vertex>
pub fn front(&self) -> &Handle<Vertex>
Access the vertex at the front of the half-edge
Examples found in repository?
src/validate/edge.rs (line 117)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
fn check_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let back_curve = half_edge.back().curve();
let front_curve = half_edge.front().curve();
if back_curve.id() != front_curve.id() {
return Err(Self::CurveMismatch {
back_curve: back_curve.clone(),
front_curve: front_curve.clone(),
});
}
Ok(())
}
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}
fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_vertices_from_vertices = {
let (global_vertices_from_vertices, _) =
VerticesInNormalizedOrder::new(
half_edge
.vertices()
.each_ref_ext()
.map(|vertex| vertex.global_form().clone()),
);
global_vertices_from_vertices.access_in_normalized_order()
};
let global_vertices_from_global_form = half_edge
.global_form()
.vertices()
.access_in_normalized_order();
let ids_from_vertices = global_vertices_from_vertices
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
let ids_from_global_form = global_vertices_from_global_form
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
if ids_from_vertices != ids_from_global_form {
return Err(Self::GlobalVertexMismatch {
global_vertices_from_vertices,
global_vertices_from_global_form,
});
}
Ok(())
}
fn check_vertex_positions(
half_edge: &HalfEdge,
config: &ValidationConfig,
) -> Result<(), Self> {
let back_position = half_edge.back().position();
let front_position = half_edge.front().position();
let distance = (back_position - front_position).magnitude();
if distance < config.distinct_min_distance {
return Err(Self::VerticesAreCoincident {
back_position,
front_position,
distance,
});
}
Ok(())
}sourcepub fn surface(&self) -> &Handle<Surface>
pub fn surface(&self) -> &Handle<Surface>
Access the surface that the half-edge’s curve is defined in
sourcepub fn global_form(&self) -> &Handle<GlobalEdge>
pub fn global_form(&self) -> &Handle<GlobalEdge>
Access the global form of the half-edge
Examples found in repository?
More examples
src/partial/objects/edge.rs (line 68)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
fn from_full(
half_edge: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
vertices: half_edge
.vertices()
.clone()
.map(|vertex| Partial::from_full(vertex, cache)),
global_form: Partial::from_full(
half_edge.global_form().clone(),
cache,
),
}
}src/algorithms/transform/edge.rs (line 21)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let vertices = self.vertices().clone().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(vertices, global_form)
}src/validate/edge.rs (line 131)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}
fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_vertices_from_vertices = {
let (global_vertices_from_vertices, _) =
VerticesInNormalizedOrder::new(
half_edge
.vertices()
.each_ref_ext()
.map(|vertex| vertex.global_form().clone()),
);
global_vertices_from_vertices.access_in_normalized_order()
};
let global_vertices_from_global_form = half_edge
.global_form()
.vertices()
.access_in_normalized_order();
let ids_from_vertices = global_vertices_from_vertices
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
let ids_from_global_form = global_vertices_from_global_form
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
if ids_from_vertices != ids_from_global_form {
return Err(Self::GlobalVertexMismatch {
global_vertices_from_vertices,
global_vertices_from_global_form,
});
}
Ok(())
}src/algorithms/sweep/edge.rs (line 88)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}Trait Implementations§
source§impl Approx for &HalfEdge
impl Approx for &HalfEdge
§type Approximation = HalfEdgeApprox
type Approximation = HalfEdgeApprox
The approximation of the object
§type Cache = CurveCache
type Cache = CurveCache
The cache used to cache approximation results
source§fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache
) -> Self::Approximation
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache
) -> Self::Approximation
Approximate the object, using the provided cache Read more
source§impl HasPartial for HalfEdge
impl HasPartial for HalfEdge
§type Partial = PartialHalfEdge
type Partial = PartialHalfEdge
The type representing the partial variant of this object
source§impl Ord for HalfEdge
impl Ord for HalfEdge
source§impl PartialEq<HalfEdge> for HalfEdge
impl PartialEq<HalfEdge> for HalfEdge
source§impl PartialOrd<HalfEdge> for HalfEdge
impl PartialOrd<HalfEdge> for HalfEdge
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moresource§impl TransformObject for HalfEdge
impl TransformObject for HalfEdge
source§fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
Transform the object using the provided cache
source§fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
Transform the object
source§impl Validate for HalfEdge
impl Validate for HalfEdge
§type Error = HalfEdgeValidationError
type Error = HalfEdgeValidationError
The error that validation of the implementing type can result in
source§fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
Validate the object
impl Eq for HalfEdge
impl StructuralEq for HalfEdge
impl StructuralPartialEq for HalfEdge
Auto Trait Implementations§
impl !RefUnwindSafe for HalfEdge
impl Send for HalfEdge
impl Sync for HalfEdge
impl Unpin for HalfEdge
impl !UnwindSafe for HalfEdge
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.