1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use std::fmt;

use crate::{
    objects::{Curve, GlobalCurve, GlobalVertex, Surface, Vertex},
    storage::{Handle, HandleWrapper},
};

/// A half-edge
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct HalfEdge {
    vertices: [Handle<Vertex>; 2],
    global_form: Handle<GlobalEdge>,
}

impl HalfEdge {
    /// Create an instance of `HalfEdge`
    pub fn new(
        vertices: [Handle<Vertex>; 2],
        global_form: Handle<GlobalEdge>,
    ) -> Self {
        Self {
            vertices,
            global_form,
        }
    }

    /// Access the curve that defines the half-edge's geometry
    pub fn curve(&self) -> &Handle<Curve> {
        let [vertex, _] = self.vertices();
        vertex.curve()
    }

    /// Access the vertices that bound the half-edge on the curve
    pub fn vertices(&self) -> &[Handle<Vertex>; 2] {
        &self.vertices
    }

    /// Access the vertex at the back of the half-edge
    pub fn back(&self) -> &Handle<Vertex> {
        let [back, _] = self.vertices();
        back
    }

    /// Access the vertex at the front of the half-edge
    pub fn front(&self) -> &Handle<Vertex> {
        let [_, front] = self.vertices();
        front
    }

    /// Access the surface that the half-edge's curve is defined in
    pub fn surface(&self) -> &Handle<Surface> {
        self.curve().surface()
    }

    /// Access the global form of the half-edge
    pub fn global_form(&self) -> &Handle<GlobalEdge> {
        &self.global_form
    }
}

impl fmt::Display for HalfEdge {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let [a, b] = self.vertices().clone().map(|vertex| vertex.position());
        write!(f, "edge from {a:?} to {b:?}")?;
        write!(f, " on {:?}", self.curve().global_form())?;

        Ok(())
    }
}

/// An edge, defined in global (3D) coordinates
///
/// In contract to [`HalfEdge`], `GlobalEdge` is undirected, meaning it has no
/// defined direction, and its vertices have no defined order. This means it can
/// be used to determine whether two [`HalfEdge`]s map to the same `GlobalEdge`,
/// regardless of their direction.
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct GlobalEdge {
    curve: HandleWrapper<GlobalCurve>,
    vertices: VerticesInNormalizedOrder,
}

impl GlobalEdge {
    /// Create a new instance
    ///
    /// The order of `vertices` is irrelevant. Two `GlobalEdge`s with the same
    /// `curve` and `vertices` will end up being equal, regardless of the order
    /// of `vertices` here.
    pub fn new(
        curve: impl Into<HandleWrapper<GlobalCurve>>,
        vertices: [Handle<GlobalVertex>; 2],
    ) -> Self {
        let curve = curve.into();
        let (vertices, _) = VerticesInNormalizedOrder::new(vertices);

        Self { curve, vertices }
    }

    /// Access the curve that defines the edge's geometry
    pub fn curve(&self) -> &Handle<GlobalCurve> {
        &self.curve
    }

    /// Access the vertices that bound the edge on the curve
    ///
    /// As the name indicates, the order of the returned vertices is normalized
    /// and might not match the order of the vertices that were passed to
    /// [`GlobalEdge::new`]. You must not rely on the vertices being in any
    /// specific order.
    pub fn vertices(&self) -> &VerticesInNormalizedOrder {
        &self.vertices
    }
}

/// The vertices of a [`GlobalEdge`]
///
/// Since [`GlobalEdge`] is the single global representation of an edge in
/// global space, it must normalize the order of its vertices. Otherwise, it is
/// possible to construct two [`GlobalEdge`] instances that are meant to
/// represent the same edge, but aren't equal.
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct VerticesInNormalizedOrder([Handle<GlobalVertex>; 2]);

impl VerticesInNormalizedOrder {
    /// Construct a new instance of `VerticesInNormalizedOrder`
    ///
    /// The provided vertices can be in any order. The returned `bool` value
    /// indicates whether the normalization changed the order of the vertices.
    pub fn new([a, b]: [Handle<GlobalVertex>; 2]) -> (Self, bool) {
        if a < b {
            (Self([a, b]), false)
        } else {
            (Self([b, a]), true)
        }
    }

    /// Access the vertices
    ///
    /// The vertices in the returned array will be in normalized order.
    pub fn access_in_normalized_order(&self) -> [Handle<GlobalVertex>; 2] {
        self.0.clone()
    }
}

#[cfg(test)]
mod tests {
    use pretty_assertions::assert_eq;

    use crate::{
        builder::HalfEdgeBuilder,
        partial::{PartialHalfEdge, PartialObject},
        services::Services,
    };

    #[test]
    fn global_edge_equality() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xy_plane();

        let a = [0., 0.];
        let b = [1., 0.];

        let a_to_b = {
            let mut half_edge = PartialHalfEdge::default();
            half_edge
                .update_as_line_segment_from_points(surface.clone(), [a, b]);

            half_edge.build(&mut services.objects)
        };
        let b_to_a = {
            let mut half_edge = PartialHalfEdge::default();
            half_edge.update_as_line_segment_from_points(surface, [b, a]);

            half_edge.build(&mut services.objects)
        };

        assert_eq!(a_to_b.global_form(), b_to_a.global_form());
    }
}